Link-11 SLEW with go2MONITOR

In early November, whilst working on an article for Jane’s, I noticed a Link-11 SLEW signal on 4510 kHz (CF) that was slowly growing in reception strength. I’d been monitoring frequencies used by the Northern Fleet of the Russian navy around this one and had already spotted that Link-11 CLEW was being used on a nearby frequency, though this remained at a constant signal strength at my location. The fact that the Link-11 SLEW was getting stronger made me stop what I was doing and start concentrating on this instead.

AirSpy HF+ Discovery SDR with SDRConsole operating software. Link-11 SLEW signal in Receiver 1, and the weaker Link-11 CLEW signal in Receiver 3. Whilst there a two SLEW signals showing, there is just one, with the left hand one being produced by the strong signal. You can see the weaker transmissions from a receiving station between the stronger ones on the correct frequency, but not on the “reflection”.

Link-11 SLEW (Single-Tone Link-11 waveform) ,or STANAG 5511, is a NATO Standard for tactical data exchange used between multiple platforms, be it on Land, Sea or Air. Its main function is the exchange of radar information, and in HF this is particularly useful for platforms that are beyond line of sight of each other and therefore cannot use the UHF version of Link-11.

With propagation being the way it is, in theory radar data could be exchanged between platforms that are hundreds to thousands of miles apart, therefore providing a wider picture of operations to other mobile platforms and fixed land bases. This data can also be forwarded on using ground stations that receive the data and then re-transmit on another frequency and/or frequency band. However, the approximate range of an individual broadcast on HF is reported to be 300nm.

As well as radar information, electronic warfare (EW) and command data can also be transmitted, but despite the capability to transmit radar data, it is not used for ATC purposes. In the UK, Link-11 is used by both the RAF (in E-3 AWAC’s and Tactical Air Control Centres) and the Royal Navy. Primarily it is used for sharing of Maritime data. Maritime Patrol Aircraft (MPA’s) such as USN P-8’s and Canadian CP-140’s use Link-11 both as receivers and transmitters of data, so when the RAF start using their P-8’s operationally in 2020 expect this to be added to the UK list. Whilst it is a secure data system, certain parameters can be extracted for network analysis and it can be subjected to Electronic Countermeasures (ECM).

Link-11 data is correlated against any tracks already present on a receivers radar picture. If a track is there it is ignored, whilst any that are missing are added but with a different symbol to show it is not being tracked by their own equipment. As this shared data is normally beyond the range of a ships own radar systems, this can provide an early warning of possible offensive aircraft, missiles or ships that would not normally be available.

I started up go2MONITOR and linked it to my WinRadio G31 Excalibur. Using a centre frequency of 4510 kHz I ran an emission search and selected the Link-11 SLEW modulation that it found at this frequency.

It immediately started decoding as much as it could, and I noticed that three Address ID’s were in the network.

go2MONITOR in action just after starting it up. Note, three ID’s in the network – 2_o, 30_o and 71_o

As the signal was strong, and it is normally maritime radar data that is being transmitted, I decided to have a quick look on AIS to see if there was anything showing nearby. Using AISLive I spotted that Norwegian navy Fridtjof Nansen class FFGHM Thor Heyerdahl was 18.5 nm SW of my location, just to the west of the island Ailsa Craig. Whilst it was using an incorrect name for AIS identification, its ITU callsign of LABH gave me the correct ID. This appeared to be the likely candidate for the strong Link-11 signal.

Position of Thor Heyerdahl from my AIS receiver using AISLive software

It wasn’t the best day and it was pretty murky out to sea with visibility being around 5nm – I certainly couldn’t see the Isle of Arran 11.5 nm away. I kept an eye on the AIS track for Thor Heyerdahl but it didn’t appear to be moving.

Whilst my own gear doesn’t allow me to carry out any Direction Finding (DF) I elected to utilise SDR.hu and KiwiSDR’s to see if I could get a good TDoA fix on a potential transmitter site – TDoA = Time Difference Of Arrival, also known as multilateration or MLAT. Whilst not 100% accurate, TDoA is surprisingly good and will sometimes get you to within a few kilometres of a transmission site with a strong signal.

One of my thoughts was that the signal was emanating from the UK Defence High Frequency Communications Service (DHFCS) site at either St. Eval in Cornwall or Inskip in Lancashire. With this in mind I picked relevant KiwiSDR’s that surrounded these two sites and my area and ran a TDoA.

St. Eval transmitter site at 50°28’43.0″N 4°59’58.0″W
Inskip transmitter site at 53°49’26.6″N 2°50’14.1″W

As expected, the result showed the probable transmitter site as just over 58 kilometres from St. Eval, though the overall shape and “hot area” of the TDoA map also covered Inskip, running along the West coast of England, Wales and Scotland. It peaked exactly in line to where the Norwegian navy ship and I were located! With the fact that there were signals being received from three different sources it is highly likely this has averaged out to this plot.

TDoA result showing the likely transmitter site at 50.60N 4.20W. Note the elongated “hot spot” which denotes the area that the transmitter site is likely to be situated.

Just after 10am the weather cleared allowing me to see a US Navy Arleigh Burke class DDGHM between myself and Arran. This added an extra ship to the equation, and also tied in with the TDoA hot spot. Things were getting even more interesting!

Link-11 SLEW at its strongest which also coincided with USS Gridley being its closest to my location.

Thor Heyerdahl still hadn’t moved according to AISLive but the Arleigh Burke was clearly heading in to the Royal Navy base at Faslane. With my Bearcat UBC-800T scanning the maritime frequencies it wasn’t long before “Warship 101” called up for Clyde pilot information along with an estimate for Ashton Buoy of 1300z. Warship 101 tied up with Arleigh Burke USS Gridley.

The Link-11 SLEW signal was considerably weaker at the time USS Gridley was at Ashton Buoy.

As USS Gridley progressed towards Faslane, the signal started to get weaker. Ashton Buoy is where most ships inbound for Faslane meet the pilot and tugs, taking up to another 30 minutes to get from there to alongside at the base – a journey of about 8.5nm.

At 1328z the Link-11 SLEW signal ended which coincided with the time that USS Gridley approached alongside at Faslane. It would be at about this time that most of the radar systems used on the ship would have been powered down so data was no longer available for transmission, therefore the Link-11 network was not required any further and it was disconnected.

The Link-11 SLEW signal disappeared at 1328z
Some images of USS Gridley arriving into Faslane taken by good friend Dougie Coull

So, was this Link-11 SLEW connected to USS Gridley? And was the ship also the NCS of the network? I think the answer is yes to both, and I’ll explain a couple of things that leads me to this conclusion. But first…………….

Link-11 SLEW Technical details

Using Upper Side Band (USB) in HF, a single waveform is generated in a PSK-8 modulated, 1800 Hz tone. The symbol rate is 2400 Bd and the user data rate is 1800 bps. Link-11 SLEW is an improved version of the older Link-11 CLEW modulation and due to enhanced error detection and correction is a more robust method of sending data. This makes it more likely that transmissions are received correctly the first time. Moreover, an adaptive system is used to counter any multipath signals the receiving unit may experience due to HF propagation.

The waveform transmission consists of an acquisition preamble followed by two or more fields, each of which is followed by a reinsertion probe. The field after the preamble is a header field containing information that is used by the CDS (Combat Data System) and an encryptor. If a network Participating Unit (PU) has any data, for instance track data, this follows the reinsertion probe. Finally, an end-of-message (EOM) is sent followed by a reinsertion probe.

The header is made up of 33 data bits and 12 error detection bits (CRC – Cyclic Redundancy Check). The 45 bit sequence is encoded with a 1/2 rate error correction code therefore giving a 90 bit field. The header contains information on the transmission type used, Picket/Participating Unit (PU) address, KG-40 Message Indicator, the NCS/Picket designation and a spare field.

Broken down, each piece of information is made up as follows:

The transmission type indicates the format of the transmission – 0 for a NCS (Network Control) Interrogation Message (NCS IM); 1 for a NCS Interrogation with Message (NCS IWM) or a Picket reply.

The address contains either the address of the next Picket or that of the Picket that initiated the call.

The KG-40 Message Indicator (MI) contains a number sequence generated by a KG-40AR cryptographic device. Synchronization is achieved when the receiver acquires the correct MI. For a NCS IM this will be made up of zeros as no message or data is actually sent.

The NCS/Picket designation identifies whether the current transmission originates from the NCS or PU: 0 = NCS; 1 = PU

Following on from the header, the SLEW data field consists of 48 information data bits along with 12 error detection and correction bits, themselves encoded with 2/3 rate error correction. This creates a 90 bit data field. 

The EOM indicates the end of the transmission and is also a 90 bit field. There are no error detection or correction bits. Depending on the unit that is transmitting, a different sequence is sent – NCS = 0’s; PU = 1’s

Analysis

There is a specific order of transmissions which takes place for data to be exchanged.

Ordinarily the NCS sends data that creates the network, synchronizing things such as platform clocks etc. Each PU is called by the NCS and any data that a PU has is then sent, or the NCS sends data, or both. This is a very simple explanation of how data is exchanged but if you monitor a SLEW network you’ll see the exchanges take place rapidly. Except for the message itself which is encrypted, go2MONITOR will decode all the relevant information for you for analysis. This means that you don’t need to look at each raw data burst as sent to calculate whether it was a PU reply or NCS IWM, the decoder will do this for you.

At this point I need to say that Link-11 decoding is only available in the Mil version of go2MONITOR so doesn’t come as standard. Should you be interested in Link-11 decoding yourself then you would need to go for the full go2MONITOR package to enable this.

As previously mentioned, the data itself is encrypted but it is possible to try to calculate who is who within the network, and the analysis of the header information in particular will give you a good clue if you already know of potential PU’s that could be on the frequency.

In this case we already have four possible PU’s:

  1. USS Gridley
  2. Thor Heyerdahl
  3. St. Eval transmitter site
  4. Inskip transmitter site

It later transpired that Thor Heyerdahl had gone into Belfast Harbour for repairs so this practically cancelled out this ship as the NCS though it could still be a PU. Moreover, Thor Heyerdahl and USS Gridley were part of the same NATO squadron at that time which meant it was highly likely they were on the same network. This left us with three choices for the NCS, but still four for the network.

Here, I’d cancel out Inskip completely as both the NCS and a PU as the TDoA appeared to give a stronger indication to St. Eval – that left us with three in the network.

The pure fact that the strength of the major signal increased as USS Gridley got closer to my location, then slowly faded as she went further away added to my theory of her being the NCS. This was practically confirmed when the signal stopped on arrival to Faslane. Throughout the monitoring period he other signals on the frequency remained at the same strength.

Based on this, this meant that the strong signal was USS Gridley using ID Address 2_o.

Let’s take a look at one the previous screenshots, but this time with annotations explaining a number of points.

Firstly, we need to look for the NCS. The easiest way to do this is to look at the NCS/Picket Designation and find transmissions that are a zero, combined with a Message Type that indicates it is a NCS IWM. Here, there is just one transmission and that emanates from Address ID 2_o – the long one that includes a data message.

We next need to find NCS/Picket Designation transmissions that still have a zero – therefore coming from the NCS – but that have a Message Type that show it to be a NCS IM. These are calls from the NCS to any PU’s that are on the network looking to see if they have any “traffic” or messages.

Because of this there should be numerous messages of this type, and if you notice none have an ID address of 2_o. However, all of these messages are actually coming from 2_o as the ID address shown in a NCS IM is that of the PU being called rather than who it is from.

Any reply messages from PU’s will show as a NCS IWM/PU Reply transmission, but importantly the NCS/PU designation will be a one – showing it isn’t the NCS. Here there is one data reply from 71_o. You’ll notice that in the “reflection” there isn’t any transmission, unlike the ones from 2_o.

Moreover, though not shown here as the messages were off screen and not captured in the screen grab, you can see that one of the PU’s sent another reply message. As I was able to look at the complete message history I was able to see that this was also from 71_o – and 2_o either replied to this or sent further data.

There are two fainter transmissions which were not captured by go2MONITOR. These were from a PU, and must have been 30_o as there are no transmissions at all in the sequence that are from this ID address.

We now have a quandry. Who was 30_o and who was 71_o?

Data is definitely being sent by 71_o so to me this is more likely to be a ship rather than a transmitter site – but – a strong TDoA signal pointing at St. Eval makes it look like 71_o is this location instead.

Now though, we need to think outside the box a bit and realise that I’m looking at two different sources of radio reception. The TDoA receivers I selected were nowhere near my location as I’d selected KiwiSDR’s that surrounded St. Eval. This meant the signal that was weak with me could have been strong with these, therefore giving the result above.

If I base the fact that I think USS Gridley is 2_o due to strength, then I must presume the same with 71_o and call this as Thor Heyerdahl as this is the second strongest signal. I can also say that having gone through the four and a half hours of Link-11 SLEW transmissions available that 30_o never sent a single data transmission – or rather, not one that was received by me.

Full four and a half hours of Link-11 SLEW as shown in the go2MONITOR results page. You can see other areas (in red) that I was decoding at the same same. By selecting an area in the results page you can access the data as decoded, saved into files. I could have further enhanced this and carried out a full audio recording for further analysis, but I didn’t on this occasion.

Here then is my conclusion:

  1. USS Gridley = 2_o and the NCS
  2. Thor Heyerdahl = 71_o
  3. St. Eval transmitter site = 30_o

Of course, we’ll never really know, but I hope this shows some of the extra things you can do with go2MONITOR and that it isn’t just a decoder. It really can add further interest to your radio monitoring if you’re an amateur; and if you’re a professional with a full plethora of gear, direction finders, receiver networks etc. then you really can start getting some interesting results in SIGINT gathering with this software – and highly likely be able to pinpoint exactly who was who in this scenario.

Now, how do I get some Direction Finders set up near me….Hmmmmmm??

SubSea Craft – VICTA DDU

One of the exhibitors at DSEI I received an early heads up on was SubSea Craft and their VICTA Diver Delivery Unit (DDU). I was immediately drawn to it because of the artistic drawings and if you have ever wanted to see something that had the potential to have been built by “Q” division then here it is.

VICTA combines the characteristics of a Long-Range Insertion Craft (LRIC – high-speed, long-range vessel normally associated with the discreet insertion of small specialist teams) with those of a Swimmer Delivery Vehicle (SDV – a submersible craft normally associated with the covert, sub-surface delivery of divers).  Its fly-by-wire control enable it to transition seamlessly and quickly from one domain to the other. 

The vessel is currently in build and so whilst there wasn’t a VICTA on display at DSEI this year, the team from SubSea Craft had a fully working cockpit simulator as well as virtual and augmented reality ‘tours’ of the vessel.  Fully marinized to enable its seamless operation above and below the surface, the fully fly-by-wire helm, specially designed for VICTA, employs an advanced control system created by BAR Technologies and based on experience gained in other projects such as America’s Cup yachts. The console consists of two large MFDs developed by SCISYS which provide the crew (pilot/navigator) with essential navigation, control and mission information.

Cockpit simulator at DSEI

VICTA carries eight divers plus equipment and has a surface endurance of 250nm. Its delivery into an operating area is highly flexible as, because of the craft’s size (11.95m long, 2.3m wide and 2.0m high), it is compatible with most launch methods, whether that be by road, surface vessel or by helicopter and it can fit into a standard shipping container.  Combined with the craft’s range and speed, this flexibility delivers options to commanders, allowing an array of tactical choices to be explored, at range from an objective area and without an enduring requirement for expensive strategic assets. 

Artistic impression of VICTA being delivered by Chinook

For submerged operations, 140kw Li-ion batteries power twin 20kw thrusters to enable a maximum speed of up to 8kts with a planned 6kt cruising speed and a range of 25nm whilst the on-board life-support delivers 4 hours endurance through a communal air-breathing system. The maximum operating depth is 30 metres.

On the surface, VICTA uses a Seatek 725+ diesel engine and a Kongsberg Kamewa FF37 waterjet propulsion system which provides speeds of up to 40 kts. The seating is provided by Ullman Dynamics and comes with an advanced shock absorbing system to provide a smooth ride at high speeds on the surface.

The craft has a retractable radar and a mast which can be used for camera, GPS and communication.  Although Defence is VICTA’s primary market, there is interest from elsewhere and the configurable nature of the accommodation confers flexibility for mission planning – balancing fuel and air with the load carried.  Conversely, alteration in size or specification offers the potential to increase capacity. 

Overall, VICTA looks to be a promising prospect, offering a more flexible and potentially cheaper alternative to the more conventional Submarine and DDU combination. Certainly, for countries that do not operate a Submarine force, but seek to enhance their maritime capability, then VICTA could well be the choice for them.

I will be following the progress of VICTA over the next year or so, hopefully getting to see it in use during some of the sea trials as they take place.

DSEI 2019 – overview

Nearly two weeks ago I attended the Defence & Security Equipment International 2019 (DSEI19) at the Excel exhibition centre, London.

The intention of this blog is to provide a brief look at what I saw on the day I attended.

Generally, I was more impressed with the smaller companies that I met rather than the larger ones. The larger ones, once they’d read my name badge and saw that I was “Media”, gave me the feeling that they couldn’t wait to get rid of me as I wasn’t there to make a multi-million pound purchase from them. The smaller, or less well known, were far more attentive and provided me with a good amount of information on their products, target audience and hopes for the future.

Whilst this may turn you off from reading the remainder of the blog, I think I’ll start with the things I was a little disappointed with.

One of the companies I was extremely interested in visiting was Barrett Communications. As I’m currently writing an article for Jane’s on a system very much like one of their products I emailed the UK office in advance to tell them that I was coming and what I was interested in. They did reply and were keen to see I was attending, even sending me a heads up on one their new products that was yet to be revealed. I was, then, very quick to go and see them once the show started.

Barrett PRC-4090 HF Tactical Manpack. 250 kHz to 30 MHz Rx/Tx (from 1.6 MHz for Tx) – CW, USB/LSB/ISB modes – 2G/3G ALE – 10W/30W or 150W PEP depending on 12v/24v power – 5 0r 25 freq hops per second – max weight 5kg

However, once on the stand, things were very different. As I said above, the media name badge meant I wasn’t a buyer. And despite trying to show keenness on their equipment, which I’d swatted up on before attending, I got the feeling the sales chap just wanted me to leave. On a couple of occasions I was brushed aside so that he could chat or shake hands with a mate rather than carry on showing me some of their products – which are actually very good. Nice gear, not always so good at media relations.

Barrett 4050 HF SDR’s in various guises, with the capability to control via tablets such as iPads.

Unfortunately, the same can almost be said with rugged case manufacturer, Peli Products UK. This time I hadn’t emailed in advance, but I sought them out as I am actually in the market for a number of new rugged cases – a new camera case, a 13″ laptop case and a GoPro case.

Whilst this time the guy I spoke to was nice and briefly showed me their new TrekPak dividers – which are pretty cool – I got the impression he didn’t really want to be at the show and he kind of fobbed me off with a brochure rather than trying to sell me the products that I had told him I was interesting in buying. The irony here being that when you go to the TrekPak part of their website, the opening image is that of a rugged case full of camera equipment with “Press” stickers all over them.

In all honesty I could go on about quite a few other companies much like these but I don’t want to have too much of a whinge about the show, so let’s move on to the good stuff.

I obviously paid a visit to the Jane’s stand first, had a quick coffee and chat – and it was nice to know that they’d heard of me 🙂

Next to the Jane’s stand was Keysight Technologies, well known manufacturers of Signal Generators, Oscilloscopes and Spectrum Analysers – and many, many other outstanding workbench solutions. I spoke to Radar, EW and Satellite solutions manager Erik Diez, who showed me one of their solutions used to analyse an unknown radar signal with the idea of creating a potential jammer, countermeasure or signal designation. It truly was an interesting chat and the demo of the equipment was very interesting – if only any of it was within my price range 🙂 Saying that, their entry stage Spectrum Analysers etc are comparable in price to the Rigol equipment I have at home.

Keysight’s UXR0134A Infiniium UXR-Series Oscilloscope (left and on monitor) linked into other components for signals analysis. 13 GHz bandwidth and four full bandwidth channels is just part of the specifications available.

I enjoyed my time with Erik, with both of us agreeing that when I retire I may be able to buy something from him 🙂

Wondering around, there were plenty of vehicles, weapons systems, EW systems, ELINT/COMINT/SIGINT companies to take a look at. There was a huge Turkish contingent who took over a large area of the north side of the Excel with pretty much all of the above on view.

I had a chuckle to myself as I walked through an area of companies selling UAV’s, straight into another area selling various weapons and systems designed to take drones out.

As well as technical solutions there were clothing/footwear companies – I had a good chat at footwear company Rocky Boots who have some nice military boots.

BAe were there in force with various future ship models, simulators and other technologies. I even bumped into old friend Jamie Hunter on their stand – we calculated that it was over 20 years since we last bumped into each other and travelled to various bases on photo trips.

Type 26 and Hunter class models on the BAe Systems stand

I would have taken more photos of the vehicles but the stands were generally pretty close and so it made it difficult for photos. Some though I did manage:

Oshkosh Defense Joint Light Tactical Vehicle (JLTV). This vehicle will replace Humvee’s in the US forces and is already in service with the Marine Corps. The British Army also announced at DSEI that the JLTV is taking part in a two year contract to demonstrate its potential as a Multi Role Vehicle-Protected (MRV-P).
The 800 Titan is on offer by Polaris Government and Defense as a militarised version of their commercial skidoos.
Polaris also had a DAGOR A1 Ultra-Light Tactical Vehicle (ULTV) on show with additional pieces of equipment added on by the likes of FN Herstal’s medium pintle mount .50 cal FN M3M

I got to play with plenty of weapons. I was very happy on the Sig Sauer stand and spent some time in the pistol area. In comparison to some of the other companies, their handguns felt good and seemed to have a smoother slide – obvs no ammo was available. I was particularly happy with the SP2022 and if given the chance to try it out properly, I’d jump at it.

A plethora of SIG Sauer hand guns, with the SP2022 nearest
There were also plenty of assault rifles and machine pistols on display, along with various sights and suppressors

On a non-live ammo front, an interesting company here in the UK is Ultimate Training Munitions – UTM. They did have a “live firing” area at the show. Instead of being live ammunition however, UTM have created training ammunition that provides a realistic environment without the potential of death. With modifications to real weapons, this ammunition can be used in exercises giving troops/law enforcement agencies the chance to fire near real ammunition at one another and know when they’ve been hit by a projectile that has a plastic cover and a coloured marker.

I’ve got to say it was very good in the small range. I feel like the next time I’m down at Mildenhall I may request a visit.

My final port of call at DSEI was the Rohde & Schwarz stand. This was for two reasons. Firstly, I wanted to spend a bit of time there as I knew their products would be very interesting and secondly – they had a bar with free Augustiner-Bräu Helles beer 🙂

The beer was great, one of my favourites on my regular visits to Bavaria. And I had a great chat with Jo who hosted me in the bar and out at the equipment on display.

R&S really do have an amazing input into many of the worlds military radio requirements. For instance, they recently provided the Royal Navy with the first land-based NAVICS radio system for the Type 26 City class FFGHM – with all ships of the class being fitted out with the integrated comms system. This will provide internal and external comms (both voice and data) via an IP network, all of which will be secure. The External VHF/UHF and HF comms will use M3SR Series 4400 and M3SR Series 4100 radios.

As well as VHF/UHF and HF comms, they will also be providing SATCOM and GMDSS systems, along with a joint venture with STS Defence for the Communication masts.

In total, the NAVICS system has been provided to over 40 navies. For the RN this includes the Queen Elizabeth class Aircraft carriers, the River class batch II patrol ships and the above mentioned Type 26’s.

Also of interest was the WPU2000 ELINT Processor, launched at the show.

The WPU2000 is a wideband processing unit – hence WPU – and has a 2 GHz instantaneous real time bandwidth. It is set out to replace the WPU500 which operates with a 500 MHz bandwidth. It collects, then processes and analyses radar signals such as those produced by low probability of intercept (LPI) radars and emissions from Active Electronically Scanned Array (AESA) radars. I was told that due to its sensitivity it can detect emmissions that may be invisible to ELINT and EW systems currently in use.

As standard, R&S ELINT and radar direction-finding systems comes complete with identification software, analysis software for ELINT signals, and a database system for radar/ELINT/EW data management.

From what I can gather, the system has had considerable interest. It is still under final tests I believe and will be available in 2020.

So, that’s my DSEI 2019 run down. Not that comprehensive really. I could literally spend months writing about the various pieces of equipment, weapons, radios and software that I spotted and was drawn to. I will follow this blog up very soon with a few individual articles on some of those that really caught my eye.

Murmansk-BN HF EW Complex

Murmansk-BN of the 475th Independent EW Centre near Sevastopol

Brief Murmansk-BN overview

Murmansk-BN has been operationally active from at least 2014 when the 475th Independent EW Centre of the Russian navy set up a complex in the Crimea south of Sevastopol. The system has a primary role of eliminating, or trying to eliminate, High Frequency (HF) broadcasts from NATO forces – in particular the HF Global Communications System of the United States (HFGCS).

HFGCS operates on well known HF frequencies with regular broadcasts of Emergency Action Messages (EAM’s) and other operational messages, phone patches etc. as required. To this date though, I am unaware of any reports that HFGCS has been interfered with by jamming. This in itself isn’t surprising. HF is a difficult thing to jam due to the very nature of using the ionosphere to carry the broadcasts. Throw in multiple frequencies in use at the same time, the same message being broadcast on numerous occasions, propagation and all other things related to HF reception means the message is likely to get through regardless of the attempts made to jam.

The Murmansk-BN complex is a fully mobile system and comprises of groups of up to four extendable antenna masts – two of which each on a dedicated Kamaz or Ural truck, which then tows a further antenna on a trailer. The masts extend to 32 metres in height. Each full Murmansk-BN complex normally has four of these antenna groups, making 16 antennas in total.

Further to that there are numerous support vehicles including a Kamaz 6350 Command vehicle and a Kamaz 6350 generator vehicle per four antenna group. Other vehicles include fuel bowsers and troop transport. Not always four antennas are used per group.

Murmansk-BN is in operation with units of both the Russian army and the navy – for the army with the 15th EW brigade in Tambov, 16th EW Brigade in Kursk, 18th EW Brigade in Yekaterinburg and 19th EW Brigade in Rassvet – for the navy with 186th Independent EW Centre of the Northern Fleet in Severomorsk, the 471st and 474th Independent EW Centres of the Pacific Fleet in Petropavlovsk-Kamchatsky and Shtykovo respectively, the previously mentioned 475th Independent EW Centre of the Black Sea Fleet in Sevastopol and the 841st Independent EW Centre of the Baltic Fleet in Yantarnyy.

It is highly likely that the 17th EW Brigade at Khabarovsk also has Murmansk-BN in operation but a this time I haven’t been able to locate any of the systems.

Screen grab from one of the Murmansk-BN videos showing an Icom IC- R8500 in use as the main receiver in each command vehicle
AOR 500 in a R330ZH Zhitel – image credited to
twower.livejournal.com

One aspect about the system is its use of analogue receivers rather than Software Defined Radio (SDR) technology – Icom IC-R8500 receivers have been noted in all the video footage available so far. This isn’t unusual for Russian EW systems – the AOR 5000 receiver is used in R330ZH Zhitel which is a mobile system primarily used in the jamming of satellite and cellular phone communication systems operated in the 100 to 2,000 MHz range. The AOR 5000 has multiple versions available, one of which has the cellular bands (824 to 849 MHz and 869 to 894 MHz) unblocked. Zhitel was used in the Crimean conflict with the high likelihood that the AOR 5000 was used to jam or intercept mobile phone communications. Recent reports have shown that Zhitel is still in use in the occupied Luhansk region.

I use an R8500 myself and it is an excellent receiver. I normally use it in conjunction with my SDR’s that provide me with a wider view of the HF bands so that I can search out signals. From the videos available online, the Russian military don’t do this but instead slow scan manually through the bands or scroll through frequencies saved to the receivers memory bank.

The receiver is linked to a PC using software that shows a visual spectrum taken from the audio output from the R8500, but this is limited to the mode in use. Video footage shows the likely use of AM mode to give as wide a visual spectrum as possible but this would be limited to the R8500’s 12 kHz maximum bandwidth. More on the software later.

The slow scan/memory scan method is not the best and would likely mean that any interception would be caught mid-way through a message. It is also time consuming. I am highly surprised there isn’t some sort of auto-scan software included. For instance I personally use df8ry’s CSVUserListBrowser to control not only my R8500 but most of my SDR’s. This can scan through stored frequencies on the Icom at a slow 1 second pace, but its better than sitting there turning a knob continuously for hours.

As the Icom is a receiver only, it needs to be linked to a transceiver using its CI-V remote jack point that then sends out the jamming signal – whether this then means another Icom transceiver is located within the command vehicle is unknown as, whilst confirmed from commentary and interviews with Russian personnel in the videos I found, there is no visual confirmation of what is used as the transmitter.

Each antenna group can operate individually or as multiples. Reports also state that the complexes can be integrated into the Russian EW command and control system.

The software

The software in use cannot be identified. It appears to operate like an automatic signals classifier, such as go2MONITOR by Procitec, but it is hard to assess whether it has this capability. It would be unusual not to have a classification capability, even if it meant manual selection of a signal.

There are a number of different screens, some tabulated, that control different functions, or provide different data.

One screen shows spectrum information split into four panels. The top panel shows the selected frequency, and what looks like audio taken from the Icom in AM-Wide mode – this differs from cuts to the Icom itself which shows it is in AM mode. If in AM-Wide it would mean the maximum audio spectrum available would be 12 kHz as this is all that the Icom can manage in this mode below 30 MHz, whilst AM would only produce a 5.5 kHz wide spectrum. However, using either of these modes would make it possible to visually obtain a signal from this.

What is interesting here though is that in the video, the top panel appears to show a bandwidth spread of 30 kHz with an area of 6 kHz in a lighter colour, possibly depicting the true area that a signal can be classified or monitored. 30 kHz is not a selectable bandwidth for the R8500 in any mode, with the maximum possible being 15 kHz above 30 MHz in WFM mode. Also of note is the noise floor indication which appears to be between -40dB and -50dB.

It could well be that this panel does not actually show a signal from the Icom, but could be the panel that shows the transmitter that produces the jamming signal.

The next two panels appear to show the signal with sensitivity information from the incoming audio. The final panel is unknown as it is not shown in any video close-up.

Another screen shows interface information to the bottom left. This has a number of tabs that control some the external elements that assist in the suppression of a signal. Connection status is shown by a green or red button.

Firstly, one tab shows the connection to a Protek KS-100M navigation device which is a GPS unit. This is connected to an antenna mounted to the top of the command vehicle and provides an accurate position for probable signal reception direction finding/triangulation purposes when connected to the other command vehicles KS-100M’s.

The KS-100M is also found in the Zhitel system as shown here in the far right panel. It is used for Direction Finding purposes in both systems – image credited to
twower.livejournal.com

To the left of the KS-100 tab are two unknown connections marked as ГТ-11and ГТ-11.1 (GT-11 and GT-11.1). ГТ in the Russian military is normally an abbreviation for rehepatop which translate to generator. In another part of one of the videos it shows the ГТ-11.1 title again, this time with four green boxes, each with what appears to be a tick box. Two of these appear to be connected as there is a joining line between them.

The final tab is unknown but marked as ГТ-205-ОПМ (GT-205-OPM) which if using the standard abbreviation format would also be related to a generator. However, the generator shown in the video appears to be named as an AD-100-T400-1R. Alternatively, you could break down the OPM part into two which would give supply (OP)/ engine (M).

What doesn’t quite tie up is that each four antenna group only has one generator, so does this section actually have something to do with the four antennas themselves and whether they have power going to them?

Above the four tabs is a box that is titled Information about current IRI. Below this is information on the signal being suppressed: Frequency – 9 961 02 kHz Type of target – unclassified Bandwidth – 3.36 kHz Duration – 16 msec Strength – 16 dB Bearing – 179 7 (1) – 0

This box is likely associated with the KS-100M tab.

The large window to the right shows what I thought at first was historic signal information in the selected bandwidth. However, looking closer I wonder if this is the case as the “signals” are too regular – they are evenly spaced. In other shots there are up to 20 signals shown. My thoughts are that these are connected to the KS-100M and are signal strengths of GLONASS GPS satellites. But again, without clearer screenshots or a confirmed ID on the software in use, this can only be guessed at.

There are numerous other tabs and screens available, but these are unreadable in the videos found.

Locations

The various units I have listed above. The sites used so far, despite Murmansk-BN being fully mobile, have been very close to the units home base. Despite the area required for a full complex deployment being large, they can be difficult to spot, but once you know the locations used – or the area – then it makes checking on them relatively easy.

The 15th EW Brigade at Tambov has not been observed on Google Earth (GE) as deployed as yet but the vehicles can be seen at their HQ at 52.666385N 41.537552E

Latest 15th EW Brigade site imagery near Tambov. Dated 13/11/18 and is the first time the Murmansk-BN was observed here.

The 15th EW HQ is situated in a large area of military ranges with plenty of surrounding free land available. It is presumed that this area will be used when setting up the complex. There is also an area to the NW that previously contained numerous antennas, but is now disused.

The 16th EW Brigade at Kursk uses a military training group for its deployment site. Only two antenna groups have been observed since first deployment in April 2015.

Latest 16th EW Brigade site imagery near Kursk at 51.713194N,
36.290736E. Dated 3/9/19

The 18th EW Brigade at Yekaterinburg is a very active unit with just two Murmansk-BN antenna groups in use at any one time according to GE imagery. Moreover, it seems to be a unit that likes to train in setting up the complex as it is quite often observed in different states. The Murmansk-Bn is spread over two sites – a permanent one (site one below) and a secondary site located in a field about 1.6km away (site two). In some imagery of site two only one antenna is up in two “groups” and quite often the site is empty.

The continuous erecting and disassembling of the complex’s could hint at the unit being involved in training. As shown in the image below it also tends to use truck mounted antennas at site two. There are no trailer mounted antennas visible, whilst they are in use at site one. However, the fact that there are six truck mounted here points to the 18th EW having a full compliment of Murmansk-BN equipment, despite only using two groups at the same time.

Murmansk-BN equipment of 18 EW Brigade at site two in a stored state

The 18th EW was also used in one of the videos. Comparing the video to GE imagery I was able to identify various features that confirmed that site two was used for the filming.

Site two confirmed as used in the Pravda.ru video

The 19th EW Brigade at Rassvet, near Rostov-on-Don, has had Murmansk-BN since at least 19/6/2016 when equipment first appeared in GE imagery at the HQ. Since then it would appear that it has not been deployed as the vehicles have stayed in a parked up state in all imagery from that date. The number of vehicles indicates only two groups have been allocated to the Brigade so far.

19th EW Brigade HQ in latest imagery dated 15/2/19

On the Russian navy side of things, the 186th Independent EW centre is based near Taybola at 68.515306N 33.290056E on the old airfield for the town. Taybola used to be a Soviet R-14 (SS-5 ‘Skean’) intermediate-range ballistic missile (IRBM) base with at least two silo complexes, a rail head, and the airfield.

The latest imagery on GE has just two Murmansk-BN groups set up at the northern end of the runway and old dispersal, but older imagery has a further group half way down the runway to the south.

GE imagery dated 18/8/17 showing the three locations of Murmansk-BN groups. the 186th has had the Murmansk-BN capability since at least 20/8/15 according to GE

The 471st Independent EW centre at Petropavlovsk-Kamchatsky, has a full complement of four Murmansk-BN antenna groups though it has had differing numbers in use since the system first arrived from at least 15/8/15. The latest imagery on GE below, dated from 3/11/18, shows just about a full complex in use. The NW group has one antenna missing.

471st Independent EW centre situated at 53.053583N 158.828178E

The 474th Independent EW Centre at Shtykovo, is also sited at a disused airfield. It has had three antenna groups in place at least once, but the latest GE imagery has just two in use.

The actual location of the 474th HQ is unknown and there no immediately close active military bases. There are numerous bases at a distance away, with a potential SIGINT site 12km to the SW. Analysis of these don’t provide any other Murmansk-BN vehicles.

The 475th Independent EW Centre is probably the most well known of the Murmansk-BN deployments. It is located to the south of Sevastopol in the Crimea at a coastal base and has been widely exposed on social media and articles since it became active. First shown in GE imagery dated 15/11/14 with one group, it has expanded to a full four group complex.

The 475th complex shown here, dated 26/8/18, with just the NW group active

It was news about the deployment of Murmansk-BN to the 841st Independent EW Centre at Yantarnyy in the Kaliningrad Oblast that drew my attention to the system. It is known that the 841st has a full compliment of four antenna groups but it is unusual to see all deployed. The image below, dated 11/9/17 is one of those times that it is fully active.

It is usually the northern site that is active when the 841st deploy. This is situated at 54.832506N 19.958467E. The “town” of Okunevo is actually a comms site.

The news I mention was reference the “new” deployment of Murmansk-BN to the Kaliningrad region, yet what is strange is that from GE analysis it is obvious the system has been in use there since at least 11/4/16 – so why this sudden hype? My only thought is that there was a major NATO exercise on in the region at the time which included USAF B-52’s carrying out Global Power missions from the US to Europe.

Was this news a counter to the US stating that Russian forces could interfere with their operations?

From all accounts, and from reported loggings of HFGCS messages since the Murmansk-BN system has been available for use, there has been zero suppression of any HFGCS frequencies that I’m aware of.

This then, with the fact that most units have not fully deployed their systems, makes me wonder whether Murmansk-BN is not quite so good as expected and claimed.

Here are the videos used for analysis:

This is the longer of the two videos and actually contains the second one.

https://www.yacoline.com/video/168091/

Second, shorter video showing the 186th Independent EW centre

Recent published work and photography processes

It’s been a busy six months or so for me with regards to having work published.

My main work has been the continuous analysis of the Russian navy to assist the editor of Fighting Ships, Stephen Saunders, to keep the data in the yearbook as accurate and up to date as possible. This information is also used in the on-line version of the yearbook. The current 2016/2017 edition is now available with plenty of my Russian navy data included, along with photos that I’ve taken. jfs2016_001

As you know I stopped selling the yearbooks last year (apart from a large sale at the beginning of this year) and since then IHS have added older titles to their online store. Though not as cheap as I was able to get them, it may be worth taking a look to see if there’s any titles you may need in your collection. Here’s the link to the Fighting Ships page in the store.

As with all things involved with data analysis, looking into one thing generally off-shoots into another. From the OSINT work that I generally do for Fighting Ships, I normally have to take notes and data which would also fit into some of the other yearbooks. Some of this data has been sent to the various editors of the C4ISR yearbooks, which I hope will also be included in future publications. And there’s also photographs of radars, weapons and other systems that I’ve been taking over the last few years that hopefully will also be of use.

jir_july_001 jir_aug_001

 

 

 

 

 

 

 

The OSINT work also brought me to the attention of one of the IHS magazines, Jane’s Intelligence Review. Since May I have worked on three articles for this magazine, two in conjunction with other writers, and one on my own. I am currently working on two more pieces for them, but at this time I can’t divulge on the subject matter. jir_sep_001

The work has been very interesting indeed, and has brought me a couple of new acquaintances and friends from it. I’m hoping that that I can carry on with other articles for them once the two I’m working on now are complete. jir_aug_002

 
Another magazine by IHS, Jane’s Navy International, has used a couple of my photos in recent months with hopefully more to follow. The magazines can be subscribed to from the IHS magazine online store.

It’s good work editing images for magazines, but its certainly a lot harder than it used to be – in general for less money than what you used to receive. The advent of digital photography has reduced the prices one gets for inclusion in magazines, mainly due to the fact that so many people now do it and so the editors have a plethora of images available to them. The silly thing is that in the old days you used to only take the photo, normally on slide film (Kodachrome 64), with no further editing by yourself (unless you happened to process the images in your own darkroom – I didn’t!). You’d send away the film to Kodak who would process it for you, and then you’d check over the slides after they’d been returned, deciding on which ones to send away. The only real work needed was to annotate the slide with basic information, and include a letter with further notes and where to post the cheque payment if used. Of course, you’d never see the slide again, and so if you wanted to have a copy for yourself then you’d need to take two photos – it was costly business using slide hence the payments you received being greater than they are now for far less work (one trip to the USA cost me more in Kodachrome 64 than it did in flights!!).

These days, the full photo process takes much longer.

Take the recent Joint Warrior (JW) exercise that I photographed. For this exercise I set aside two days for the actual photography. I then needed a further four days to carry out the actual editing of the photos for various publications! With current copyright laws, and the fact that most publishers are aware that photographers send away the very same image for inclusion in different magazines, the publishers now insist on exclusivity with an image (including publication online). Because of this, as a photographer you have to think ahead about who you are taking photos for. With JW I was thinking of three main possible targets – Fighting Ships, Jane’s Navy International and Warships IFR. As well as these I also had to think about the various other yearbooks by IHS (C4ISR and Weapons). So, if one ship comes along I need to take at least three images of it, maybe milliseconds apart, to cover the three main publications. Multiply that by a few hundred and you can see that there is a lot of images to go through once back home.

Back home then, I now need to process the images myself – no longer do they go away to Kodak for initial processing, and the publication no longer fine tunes the image for what ever use they may have. You need to trim it, get the exposure and colours right and make sure it’s sharp. Not only do you need to edit each image, you also have to include additional information for each one. This needs to be a title, your name, copyrights, what the subject is, when and where you took it and any other information you may think is needed for the publisher. With over 400 photos to go through for this JW it took a lot of time to carry out the whole process – 4 days as I’ve already said. From the 400 or more images that I took, I sent away around 70. How many of those will finally end up being published is unknown but I hope that it is around half of them.

Saying all that, it really is good fun and I still enjoy seeing my photos in any publication, be it book or magazine. I recently bought a new gadget for my GoPro, a time-lapse timer that moves the camera, and I decided to test it out whilst editing one of the images taken at Joint Warrior. The result of that test is below:
 

 

wifr_001 Talking of having things published in Warships IFR, I have actually had quite a good amount put into print for this magazine recently. And I believe there is to be a good spread in the December edition with images taken from the Joint Warrior exercise that I have mentioned above. I also hope to start writing the occasional piece for the magazine.

I’ll keep you informed.