SDR Console V3 analyser

The shack, finally operational after a few months off.

With the rebuild of my shack complete I’ve been able to start testing out all my radios, new connections etc.

The Mini-Circuits components all come well packaged in anti-static bags

A whole bundle of new cables from Mini-Circuits arrived last of all and have helped tidy up the back of the radio 19″ rack considerably. I’ve previously installed quite a few Mini-Circuits components, including 0.141″ diameter Hand-Flex interconnect cables, and so it was more of these that I opted for. The bonus with these cables is that they are hand formable meaning you can shape and bend them into pretty much any area that you want to. The 141 series (which I use) are capable of a 8mm bend radius, whilst the thinner 086 series can be bent to 6mm.

Being able to manipulate the cables certainly helps in tight spaces, and when you don’t want them to hang down

Previously I used hand-made cables with RG58U coax, but in order to have a 19″ rack that can slide out from under the desk, the cables needed to be longer than actually required. Because of this the cables would drop down into all the others attached to the PC and in some cases cause a little interference. With the Hand-Flex cables I’ve been able to use the same length of coax to allow me to move out the rack, but be able to bend them up and out of the way of the PC cables.

They’re also very good for the radios on the rack, being able to bend them and hold in place around the radios and other cables. They are near lossless too with a quoted insertion loss of 0.01 dB in the HF band to 0.55 dB at 18GHz. I normally run tests of the Mini-Circuit components when I receive them and find that the figures quoted are near spot on. I highly recommend these cables if you’re looking to upgrade your systems, and are available from the Mini-Circuits website, along with lots of other goodies that will tempt you.

Measurement of insertion loss of the Mini-Circuits ZF3RSC-542B-S+ Power Splitter/Combiner I also purchased as part of my plans for satellite communication monitoring. This is connected to the AirSpy SDR and takes feeds from two SatCom connections (currently deactivated) and a WinRadio AX-71C Discone Antenna. Mini-Circuits quote an insertion loss of around 19.5dB at 130 MHz which is confirmed here with a signal generated at -20dB being less than 1dB out at -40.48dB when passed through the combiner.

This image shows how the cables can be held in place without cable ties

The radio setup now includes two new SDR’s – an AirSpy HF+ and a standard AirSpy with the HF+ replacing the Enablia TitanPro. I’ve also reinstated my WinRadio G31DDC which had been in storage for a year or so. I really do like the TitanPro, and have put it into storage for the time being. The recording capabilities in particular are great with it being able to select 40 frequencies at once spread over numerous bandwidths, but I have had issues with the power supply – one being it caused interference. I attempted to make one of my own but it has a 6v(+/-1v)/2.5 Amp current requirement and no matter how many different methods of building my own supply using a 12v feed downgrading to 5, 6 or 7 volts, it just wouldn’t work in a stable manner. In the end it was easier to remove it and slot the G31DDC back in its place.

As it is, I’d forgotten how good the G31DDC is and I don’t really feel like I’m missing much thanks to the ability to use the other SDR’s with SDR Console V3 and it’s SDR Analyser.

The three 19″ racking units from Penn Elcom, along with all the shelves, have been very useful and certainly makes things easier when it comes to changing radios and connections over. I can just disconnect a few things and slide the whole unit out. I also obtained a 19″ Project box from them which I used as my main 12v switch unit. This is connected to two regulated desktop power supplies that act as master switches.

Although the SDR Console website page for the Analyser states it isn’t available yet, this is incorrect and it is downloaded with the latest version of the main programme.

If you’re a current user of V2 or have been in the past then you won’t notice much difference. You can have up to 24 parallel demodulators operating within the SDR’s bandwidth that you have chosen, all of which can run independent of each other in receive and record. You can also run each demodulator through a decoder such as MultiPSK independently and decode these in parallel with each other. This capability has taken that step towards those of the TitanPro, especially when being used with the Elad FDM-S2 that can provide a Maximum DDC bandwidth of 6144kHz’s.

Unfortunately, whilst you can schedule recordings of IQ data, you still can’t do this for individual channel recordings. This is a real shame as it would be a fantastic addition to the capabilities of SDR Console.

Getting back to the analyser though this does, in theory, cancel out the lack of channel recording scheduling.

When you record IQ data it is saved as WAV files, split into multiple ones depending on how long a recording you make . All of these files can be individually played back through the incorporated SDR Console player but even better is the use of the File Analyser.

With this you get a visual “image” of the complete recording, whereby after opening the analyser you get it to combine all the files into one XML file. For the image below I used the FDM-S2 with a selected bandwith of 768kHz centred on 4425kHz, hoping to catch calls to Russian Naval base Severomorsk in CW(RJD99) from ships operating in the region. I set the scheduler up to record from 0000z to 0700z which worked perfectly, giving me 78 files totalling 78GB – obviously, the bigger the bandwidth, the larger the total file size.

After clicking on New in the analyser and browsing to the relevant folder the WAV files are saved in, the analyser finds the first one and gives this as an option to open – it automatically adds the remaining WAV files and starts the process. This can take quite some time to extract, around 45 minutes for the example shown. But you only need to do this once because once it has finished you can save it as an XML file and open it at any time – in this case it was a 28MB XML file.

A note here – do not then delete the WAV files as the analyser still needs them.

As you can see, I was successful in locating calls to RJD99, and I have highlighted some of the others that I took a look at – this is just a screenshot of two hours out of the seven recorded.

All you then need to do is find any signal of interest, and after clicking on select and start in the top ribbon, click on the signal. This will then start playing the file from that location in the main SDR Console window. You don’t need to stay on that frequency, you can use the Console as if you were listening live and move around the frequency range you dictated in the bandwidth of the recording.

And, as it is basically a live screen you can do additional things such as record and use decoding software.

RJI92 calling RJD99 on 4416 kHz during playback of the Analyser

When using the Analyser I run this through a separate PC meaning SDR Console itself can carry on working on the main radio control PC. This is also handy if you’re away but have time to go through the IQ data using a laptop. Just copy over the original WAV files to a portable hard drive/memory stick and carry on as described above.

There are numerous other functions available for you to use with the main part of SDR Console, some I still haven’t had the chance to play with completely. I’m still exploring things such as the Signal History function which can store up to 48 hours of data. Here you can export data in CSV format to third-party programs such as QtiPlot. Signal history can also be used within the Analyser

This is useful as it can give you a quick overview into single frequency use, signal strengths, fading and such like. Definitely something I need to spend more time on.

It’s been a long time coming, but Version 3 of SDR Console has been well worth the wait.

A quick update & Roland Proesch Radio Monitoring books 2018

Firstly, a quick update on what’s been going on with me.

In the world of radios, ships, photos and Russians – not a lot!! No blog since September 2017 wasn’t what I had planned that’s for sure. Much of my writing time has gone to Jane’s, which has been great. This has meant I had to prioritise any free time available to them, having to put my blog on the back burner. Overall I’ve written or carried out analysis for around 10 Jane’s magazine articles since September 2017, as well as my continual fleet analysis on the Russian navy for Fighting Ships.

One of my articles from the November 2017 edition of Jane’s Intelligence Review

With regards to any radio monitoring, that also had to go on a back burner. When the shack was rebuilt as part of the house renovations I installed all the coaxial in temporary locations, drilled through the outer wall and coming into the shack through a large 50cm by 30cm hole in the interior plasterboard wall. This was in April 2015!! Hardly temporary!!

Due to the pretty crap weather we get here, and the fact that I needed at least 5 days of continuous good weather to be able to do all the connections outside, it has taken until the last week – 3 years later – to finally get the sunny days I needed at the same time as being off work.

Over the last year, the temporary connections had become worse and worse, with lots of noise causing interference. Nothing was earthed correctly either. Other factors such as the neighbours installing dreaded solar panels really screwed up everything, totally wiping out the main Russian navy day frequency they use for CW.

Not only that, with the hole in the interior wall being the size it is, it gets very cold in the room during the Winter – and the rest of the year for that matter – with a large draft blowing in most of the time.

Anyway, new outside connections are complete, in nice new waterproof boxes. Now the exterior part is done, I’m not weather dependant on the rest of it and hopefully I’ll be back up and running in the next month or so. I’ll do a full blog on the new setup once it’s complete.

Roland Proesch Radio Monitoring books 2018

For 2018, Roland Proesch has updated two of the five books he creates in his Technical handbook range.

The first is Signal Analysis for Radio Monitoring Edition 2018. This has nearly 60 new pages of information on how to analyse various waveforms, including a new section on Satellite signals – useful if you’ve already purchased his Technical handbook for satellite monitoring 2017. There’s also a section on describing how to analyse RADAR signals. Other things such as useful software tools and PC calibration is also included. Here’s a PDF of the contents with new information highlighted in yellow.

The other book is Frequency Handbook for Radio Monitoring Edition 2018. Whilst many people would say a book containing information on frequencies used by various utility stations, armed forces and other agencies is dated and old school, I tend to disagree. There is so much useless information out there online, I prefer using a book for looking things up that I may have found on the HF bands. Granted, a book does go out of date – normally as it’s being printed – but you can quite easily add your own entries in the right places if needed.

This update has several hundred changes of new, deleted and updated frequencies ranging from 0Hz to 30000kHz, and contains a section dedicated to ALE frequencies and idents.

Both books, along with the ones released last year in one of my previous blogs, are available from his website. As usual, he has his bundle offers which makes the books cheaper if you buy two or more at the same time.

I’ve used his books for years and highly recommend them.

An updated AIS system

Back in March I blogged about my AIS system, in particular about the LNA4ALL and how it coped with the low signal reception of my homemade antenna.

Things went really well until one day the reception dropped out completely.

A quick test of the system showed that something had gone wrong with one of the pieces of equipment though at the time I was unsure whether it was the antenna, the LNA or the NASA Engine AIS decoder.

As I was due to go away for a short while I decided to tell all the relevant websites that I feed (IHS AISLive, MarineTraffic and VesselFinder) that my system would be offline until further notice due to a technical fault, and that as soon as I’d worked out the issue that I’d get it fixed and back online.

The guys at MarineTraffic were very quick in getting in contact with me and offered to help with a new decoder as long as I didn’t mind being a beta tester for the equipment and some of their new software. I was very happy to agree to their offer.

The decoder they organised for me was a new Comar Systems SLR350ni Intelligent AIS Decoder and it arrived with me about ten days after I agreed to their offer.

The main thing that really appealed to me about this decoder was the fact that it links directly to your home network either by WiFi or hardwired using RJ45 Ethernet cable. This meant that I could install the decoder remotely, nearer to the antenna and out of my radio shack, but have full control of it from my main PC. The decoder itself is interfaced to a Raspberry Pi™ 3 computer, comes with aforementioned WiFi and Ethernet connectivity, 4 USB ports and an HDMI connector for a monitor display. It can be used in any AIS setup and is a dual channelled parallel receiver.

Installation was simple. Within 15 minutes the decoder was connected to my home-made antenna and we were receiving data – and at a much faster rate than the NASA due to the dual channel capability.

The MarineTraffic part of the agreement included some new software that they are testing, which includes the capability of sending received raw AIS data to five feeds such as AISLive. Any of these decoders obtained using MarineTraffic come with their host settings hardwired in so any data received through it is automatically sent to them – you don’t have to do anything to send data to MarineTraffic, just attach an antenna, connect it to your network and switch it on – that’s it.

In the new software there is a page where you can add other host iP addresses and port details. Doing this means a couple of things:

1 – You no longer need to use other software such as ShipPlotter or Neal Arundale’s NmeaRouter/AisDecoder software to forward on the data.
2 – You don’t actually need a PC connected directly to the Comar decoder.

The second point is interesting as it means you no longer need to have a PC running 24/7 to feed any of the AIS data to whichever sites you want. This is a bonus if you currently switch off your computers when you go on holiday or are away from home for a while. It still means you can provide the data whilst you are away.

Personally I have the following set up:
MarineTraffic (hardwired)
AISLive (iP host)
VesselFinder (iP host)
ShipPlotter (internal network address)
AIS Decoder (internal network address)

Using the ShipPlotter software still means I can get a better picture of what I am receiving, range of reception etc.; whilst using the AIS Decoder software means I can look at any of the messages sent in greater detail.

I have to say that I am very impressed so far, and highly recommend the Comar decoder. It is available from numerous online shops, but if you are going to feed MarineTraffic you may as well get it from their site, currently priced at €379.00. Doing this means it already comes pre-programmed to send to MarineTraffic.

A new antenna too

I had gotten round to testing all the equipment to see what the cause of the original loss of reception was and it turned out to be the LNA4ALL. This was a shame as I had new objectives for the LNA with regards to the reception of weather satellites so it means I’ll have to get a new one. Luckily I don’t need to replace the whole thing, just the circuit board, so it will be much cheaper – but a pain none the less, especially if I have the same issues with UK Customs that I had previously. The likely cause of the failure was an Electrostatic Discharge of some sort or other. There had been some Lightning storms nearby over the previous days and it could well have been this that had done it – strange though as my equipment is very well protected from this happening. The area I live in is prone to power surges and power cuts – the joys of living in a remote area in Scotland, still backwards in many things the rest of the UK take for granted.

With the loss of the LNA, this drastically reduced the range of my home-made antenna and so I decided it was time to buy a new one. I’d toyed with building a better one but in the end I just couldn’t be bothered and so I went for a Metz AIS antenna, bought from the Salty John website. Great service from them meant it arrived within 48 hours and so when it came to installing the Comar decoder I also rigged up the antenna in the loft space next to my home-made one at the same time.

If I have one complaint about the Metz, it’s that it doesn’t come with any form of protection for the co-ax connection area. This is especially strange as it is designed specifically for boats and would therefore be exposed to wet/salty conditions all the time. Add to that that the threaded area is over an inch long, much longer than what you would get with a UHF connector, this makes it a weak area for the lifetime of the antenna. If you were to install it outside (which is the general recommendation for AIS reception) then you would need to cover it in self-amalgamating tape and check it regularly to ensure it is still working. Not perfect if you need to climb up on the roof of your property.

One other option would be to use the tightening nuts supplied to fix some plastic or aluminium tubing around the connection, but again this is some extra hassle which could have been remedied by Metz themselves.

As it is, I seem to be getting great coverage from the Metz from it’s position in the loft, though I may still add a LNA4ALL to boost it even more.

With the antennas side by side I was able to run some quick comparisons between the two. The images below show the Spectrum analysis using my Rigol gear.

From the images you can see that with my messing around of the home-made antenna I had over trimmed it to be tuned to 180MHz rather than the required 162MHz. At 162MHz it measured in at 9.3dB which wasn’t even worth calculating the VSWR, whilst at 180MHz its VSWR was 1.23:1

In comparison the Metz antenna, which is a half-wave whip antenna, came in nicely at 83.6MHz with a measurement of 30.15dB/VSWR 1.07:1. Metz communications specify less than 1.2:1 VSWR so this is spot on.

With the new set up things have definitely improved. I also ran a quick test using AISDecoder to see how many messages the two antennas fed to the Comar, be it in a very basic manner of waiting till there was some ships being picked up, running the software with one antenna for a minute, noting how many messages were received and then swapping to the other antenna for the same length of time. In theory it is a reasonable test as the ships won’t have travelled far in that time, but not 100% perfect. Regardless, the Metz was able to pick up 19 messages in its minute test, whilst my home-made antenna only managed three! The test was carried out in less than five minutes.

In conclusion, whilst it has been a pain to lose the LNA4ALL, it has turned out better in the end for my AIS station. Statistically my data feed has improved no end for AISLive and MarineTraffic; and having gone away twice now since installation I have still been able to provide 24/7 coverage where I would normally have switched the whole system off.

Area coverage provided to MarineTraffic since the new installation. Fitting a LNA4ALL in the future should make this even better.

ShipPlotter example with the new installation. The bold plots are being received by my station and show 4673 messages received by 1032z. The image below shows the same but at 1753z and a message number of 28135. This averages out at about 52 messages a minute, though it was a busy time with lots of fishing boats in the area.

NOTES:

Following a couple of questions regarding the Comar decoder I’d like to add that it doesn’t have to be connected to the Internet or a Network to work. It can be used “locally” using the USB connections direct to a PC.

Also, you do not NEED to feed MarineTraffic if you don’t want to. If you don’t want to do this then buy a unit from another supplier which won’t have the files installed.

Full analysis of the sinking of Liman

With it being a month this weekend since the Russian navy Moma-class AGI Liman was hit by another ship resulting in its sinking in the Black Sea, I thought I’d publish my full analysis on the incident.

Originally this work was created for Jane’s Intelligence Review, but due to space limitations in the magazine, it was condensed into a half page report. This blog includes all the imagery and extra text that was left out, but also some further analysis that I’ve been able to do in the mean-time. Because of this, I must state that the analysis published here has nothing to do with any IHS publication, and that any views (unless otherwise stated) are all my own.

Liman, taken in November 2015 by Yörük Işık

A brief account of what happened

On the morning of Thursday 27th April 2017, at approximately 0830z, reports on social network starting coming in that Moma-class Intelligence gathering ship Liman of the Russian navy had collided with a livestock ship in the Black Sea at a position approximately 30nm to the North of the entrance of the Bosporus Strait. There was thick fog in the area at the time of the incident.

Early information from the Russian Defence Ministry stated that Liman had collided with a ship named Ashot-7 but a search through ship registries quickly showed that this ship did not exist. From AIS analysis however, a ship identified as Youzar Sif.H had departed the port of Midia in Romania for Aqaba in Jordon at approximately 1645z on the 26th April heading for the entrance of the Bosporus Strait. The ship was carrying livestock, reportedly sheep. From the AIS data it was noted that Youzar Sif.H was cruising at a speed of 11 knots for most of the journey across the Black Sea until at 0845z on the 27th April the ship came to a sudden stop. It is here that the two ships collided.

Liman was operating without any form of AIS at the time, despite being in thick fog – it is likely not to have had the system installed. To this date, the Russian Defence Ministry, has not reported what tasks Liman was carrying out but it is known that it wasn’t due to pass through the Bosporus Strait.

The collision holed Liman below the waterline which led the ship to starting to sink. Though most of the [up to] 85 crew members evacuated, it is known that some remained on board to, in the words of the Russian Defence Ministry, [remove] all special equipment, documentation, weapons and ammunition. [The] ship’s crew were evacuated to life-saving appliances, and then safely transported to the base of the Black Sea Fleet in the Crimea.

Almost immediately following the reports of the incident, new Project 22870 Ocean-going Rescue Tug SB-739 was sent to the scene from the Black sea navy base in Sevastopol. SB-739 does carry AIS equipment and analysis of this shows that the ship departed at approximately 1030z on the 27th, arriving 20 hours later. SB-739 carries the latest ROV to be deployed to the Russian navy, the Marlin-350 made by Tetis-Pro. This ROV can operate up to depths of 350 metres, with charts of the incident area showing depths of between 50 and 100 metres.

It was noted at the time of the incident that a Russian flagged Civilian Survey ship Хезер Си (Heather Sea) had commenced operations approximately 20nm to the NW of the collision site. The final position where Liman supposedly sank has been reported on social media at 41.50N 28.95E, the area where Heather Sea was operating, but this is a long way for the Liman to have drifted prior to sinking. A good friend of mine intercepted a navigational warning sent out by the Turkish authorities on Navigational Telex (NAVTEX) stating the final sinking position as 41.30 24 N 028.57E and it is here that SB-739 positioned itself on arrival.

Youzar Sif.H rescued some of the Liman crew members, and it is believed that another Russian flagged cargo ship, Ulus Star, also took part in rescuing crew as AIS analysis shows the ship deviating from its course to the incident area, before continuing on through the Bosporus later on in the day. At one stage it rendezvoused with both Youzar Sif.H and a Turkish government tug, Kutarma-3, which was one of the Turkish SAR ships sent to the area.

AIS data combined into one image
1 – Youzar Sif.H cruising at 11kts at 0813 UTC 27 Apr 2017
2 – Youzar Sif.H technical stop/malfunction at 1854z having started to return to Midia
3 – SB-123 arrives at the incident site at 0615 UTC 28 Apr 2017
4 – Heather Sea stays on task throughout incident

Youzar Sif.H returned to Midia, whilst SB-739 remained on site. Another Russian research vessel, Project 11982 AGOR Seliger, broadcasting as a “Law Enforcement” vessel on AIS, joined SB-739 at the area where Liman sank on the 1st of May . Seliger carries a submersible vehicle which was used to examine the wreck of Liman. Further reports of two other ships arriving around the 10/11th of May were given. These were KIL-158, a Kashtan-class buoy tender that has lifting equipment capable to take weights of up to 130 tonnes and Epron, a Prut-class rescue tug which is used for diver operations.

With the arrival of KIL-158 and Epron, it is highly likely that the Russian reports that all equipment was evacuated before the sinking were false and that these ships were here to recover those items still left on board. In particular, recent images of Liman show it with a large SATCOM dome towards the stern. This will almost certainly have contained a dish used for a SATCOM system given a NATO codename “Punch Bowl”. This communicates with store and dump type satellites such as Strela, Raduga and Rodnik. Information is collated and stored within the system and transmitted when a satellite passes within range. The satellite stores the information and “dumps” the data once in range of an appropriate ground-station. It would not have been possible to remove this system from the deck quickly and it is likely it went down with the ship.

With the final result of this incident being a lost ship, luckily with no loss of life , it highlights why the requirement of AIS on all shipping, even military, should be mandatory, especially in areas of high intensity traffic such as the Bosporus Strait.

What happened next….

There quickly followed a media frenzy of accusations and denials.

Russian media accused the Turkish government of sending divers to the wreck within an hour of Liman sinking and stealing all the equipment left on board – this is despite publishing on the same day how all the equipment had been recovered by the heroic crew of Liman. It is totally unlikely that the Turks had managed such a feat. Apart from the fact that it is dangerous to be diving on a wreck that soon after it has sunk, as shown by the ships needed by the Russians to do the actual task of recovery, the Turks sent nothing of the sort to the area. In fact, they did a great job of assisting a ship in distress.

Close-up of Youzar Sif.H’s track following the collision. The grey ship is Kutarma-3, which stayed to assist the sinking Liman.

The Russians then accused the crew of Youzar Sif.H of operating their ship dangerously in conditions that were unsuitable for a speed of 11 knots, including suggestions that the crew were drunk. Of course, they said nothing of the fact that their own ship was operating clandestinely (be it in open sea and legally) without the safety net of AIS equipment. The Russian navy is currently trying to sue the operating company of Youzar Sif.H for the loss of Liman.

Also of note was an interesting statement by Captain Vladimir Tryapichnikov, the head of naval shipbuilding, at the recent launch of the second Project 18280 AGI Ivan Khurs on May 16th. He alluded to the fact that Ivan Khurs would replace Liman in the Black Sea fleet, and that there would be a further two ships of the class built. His actual words were:
Let’s give the fleet the second ship, and then talk about the next two. Defence plans indicate that the Navy will receive them before 2025

This is almost likely to be false – on both counts. There has never been four ships planned and the replacement of Liman with Ivan Khurs would be a ridiculous waste of money. The Russian navy has a terrible funding problem, with not even enough projected funds available to build new Destroyers they have planned. They are also desperate for a new Aircraft carrier, but funding makes this highly unlikely; and they are seemingly already having problems funding the refit of Kuznetsov(orel)-class Aircraft Carrier Admiral Kuznetsov which is about to begin. With this in mind, and other on-going funding problems with frontline ships and submarines, it is very unlikely they will put aside any cash for two more AGI’s.

Further more, the Project 18280 AGI’s are not designed for operations in areas such as the Black Sea, but more for in areas further from Russian shores such as off the East coast of the USA – for example, those tasks carried out by Project 864 Vishnya-class AGI Viktor Leonov which is often operating near to Cape Canaveral and the USN Naval Submarine base at Kings Bay, Georgia. If Liman were to be replaced by anything it is more likely to be by one of the remaining Project 861 Moma-class AGS Survey/Research ships that the AGI versions were converted from. This makes even more sense if equipment was rescued before the ship sank as it would be an easy fit. My analysis of Liman makes me think it wasn’t a fully converted AGI as it still retained the crane on the forward deck, which other AGI’s had removed and that the AGS’s retain. This to me shows that not much structural work would be needed to get a quick replacement available – and at not much cost.

Liman, taken again by Yörük Işık, but this time in October 2016. Now the ship has the “Punch Bowl” SATCOM dome at the stern.

The statement by Tryapichnikov was more than likely a face saving one following the sinking of Liman and I totally expect Ivan Khurs to eventually end up with the Pacific fleet as planned. It may, however, first make a trip to the Black sea/Mediterranean to prove some sort of point.

Ironically, exactly one month later, Youzar Sif.H anchored to North West of the Bosporus awaiting its turn to transit through, having left Midia on the 26th May. It did so on the 28th, it’s destination this time is Misrata.

Whilst then, the dust has settled on the actual incident itself, it did highlight some other points.

Social media and its self-professed experts

Now, we all kind of love Social media and the internet – we do, there’s no denying it. After all, I wouldn’t be here doing this, I wouldn’t have access to endless amounts of information, data and history at the click of a button. But, what I ALWAYS do is check, check and check my facts.

I know my stuff, but am I an expert? No, I would say I’m not. It would be a dishonour saying I am to those that are actually experts. For instance, despite being quoted as a Jane’s Fighting Ships correspondent in IHS publications, I still quite often ask for advice from the yearbooks editor. He is after all an ex Commander of Royal navy ships, NATO and the MOD – totalling over 30 years in the Royal navy. I’m, in reality, an Air Traffic Controller that has a high interest in the Russian navy because of my “hobby” of monitoring their ship HF frequencies. One thing, has effectively led to another.

What this incident has very much highlighted is just how quickly false information is put out to the World without any actual analysis before doing so.

Take the operations of Heather Sea. Many social media “experts” stated that Heather Sea was sent to the aid of Liman when in fact, from simple analysis of AIS information, it was obvious that the ship had departed Varna in Bulgaria at approximately 2030z on the 26th April – some 12 hours before the collision reportedly took place! Very clever of the Russians to know that the collision was going to happen and send a ship there, ready for it to take place! Moreover, Heather Sea remained on its task site for over a week, 20 to 30nm from the position of the collision – having arrived there at 1500z on 27th April, some 8 hours after the reports of the collision started to filter through. It is fitted with modern ROV’s and so would have been ideal to carry out rescue/recovery, but it didn’t. It had nothing to do with the rescue of the Liman and the “experts” had given out incorrect data and positions.

Other experts suggested, even betted, that the arrival of KIL-158 and Epron was so that Liman could be raised from the sea bed and taken back to base. This just shows sheer stupidity rather than any knowledge.

Epron taken by Yörük Işık

And then there are the “There is something highly suspicious about this incident” people of social media. They deny it, but they are similar to conspiracy theorists. And I say this because unless they carry out full analysis on what happened and look into every possibility, what they are stating as fact, is actually incomplete and cannot be relied upon. Their ignorance and stubbornness of just basic principles again shows them as being a theorist – and yet, they say they are an “expert” even when they are shown strong evidence that shows their thoughts as being wrong. Even worse is the fact that some get a social-media following that believes everything they say and that they are an expert – this leads them to believe even more so that what they are saying is correct, when it isn’t.

One ridiculous suggestion was that Liman was jamming the AIS frequencies with its operations. Firstly, why would it have only hampered Youzar Sif.H, as every other ship in the area at the time was perfectly ok; and secondly, it would be a very clever ship to be able to carry on its frequency jamming from the depths of the Black Sea as other ships, including Youzar Sif.H on its revisit this weekend, have been lost from AIS receivers – as shown later on.

Let’s get back to Liman then, and the events leading up to the collision.

There are people out there that have stated that Youzar Sif.H had drifted off-course or wasn’t on the standard route and had even switched off their AIS equipment to hide this. Firstly, there isn’t a set course for getting from Midia to the Bosporus – the ships can get there in whatever route they want to. The fact is though, that they are on a schedule and want to get there the quickest and cheapest way possible and so they will go direct.

The social media experts have concluded that Youzar Sif.H was off-course because they ran a quick look at the traffic density data available on MarineTraffic. Now this data is all well and good, but it has it’s faults. The main one is that the data is basic. It draws a line from one point to another, taken from position reports from AIS data – and if the there’s a gap of 100nm it will draw a line still between these points. In areas of no AIS receiver coverage these lines will still be drawn, but there’s no proof that the ship actually travelled this course. The same principle occurs with all other basic online AIS software providers, including AISLive provided by IHSMarkit.

Youzar Sif.H was tracked pretty well after departure and did deviate from the route shown on the traffic density maps, but only just. A few hours before the collision took place Youzar Sif.H was no longer tracked by any MarineTraffic or AISLive feed, until at 0813UTC when it appeared again. Not long after, the collision took place.

Because the ship was tracked fully after the collision it has been alluded to by some that the AIS system on Youzar Sif.H was switched off for a while, and was only put on again just before the collision. Now why would a ship carrying sheep do such a thing, especially in dangerous conditions such as fog? The ship had nothing to hide, and the likelihood of switching off the one thing that would help them from hitting another ship in such conditions is certainly unlikely. AIS is only useful if all ships carry it, and here Liman didn’t. No doubt there would have been a basic primary return on the radar of Youzar Sif.H but it may well have been too late by then. The cause was that Liman was operating in fog with no anti-collision system in place. To further add to the conspiracy theory, Youzar Sif.H was able to be tracked most of the way back to Midia.

Youzar Sif.H transiting the Bosporus on the 28th May 2017 taken by Alper Boler

I go back again to me saying that I’m not an expert, but I’ve listened to radio since I was around 13, especially Air Traffic Control. This led to my 28 year career in the RAF and Civil ATC. From this I’ve learnt about how radio waves travel. But am I an expert in this principle? No, I’m not. There are guys and girls out there that know a hell of a lot more about it than I do. Here’s the thing though. I know the basic principles.

A very basic and simple fact is that Very High Frequency (VHF) radio transmissions travel with a line of sight principle called the Radio Horizon. In other words, two antennas need to be “in sight” of each other to receive that which the other is sending. No, you don’t actually have to see the other one, but in theory you need to be able to – in most cases. There are other principles and phenomenon such as VHF Tropospheric Ducting which allows for radio waves to travel hundreds of miles, but even then they can skip the hundred miles in-between leaving a null zone.

Take ATC again. The higher an aircraft is, the more likely it is to receive a signal from the ground as the “line of sight” is better, though it does also rely on the power of the transmitter. The curvature of the Earth can stop this and does. As an example, at work we have difficulties sometimes with USAF C-130 Hercules aircraft that are operating at the furthest range of one of our transmitters when they are cruising at FL230/FL240 – the Earths curvature, along with where the antenna is placed on the airframe gets in the way. Two or three thousand feet higher and they would receive us. If flying towards the transmitter then this isn’t a problem as the aircraft will come over the horizon and within “sight” of the transmitter, but going away means that sometimes a relay is required from another aircraft.

The same goes for things such as Mode-S receivers widely available for tracking aircraft. They only have an optimal range before the amateur can no longer pick up traffic – actually, this applies to physical radars too hence why many countries have a large amount of them to cover the whole country, and further. Stick a mountain, or even just a small hill somewhere and the reception range will be reduced for aircraft “below the horizon”. There’s a reason why military aircraft fly at lowlevel.

A great page for showing the principle of VHF reception is on Neal Arundale’s AIS page where it has a graph showing the principle.

My Mode-S antenna is on the roof of the house and I get a range of about 250 miles for aircraft that are at a high altitude. Out to the east of me, less than a mile away, is a hill of around 300ft which means I tend to lose aircraft descending into Edinburgh for instance when they go through around 15000ft – yet 200 miles away I’m picking up traffic over the North Sea.

My AIS antenna is lower than this. And it is in the loft. I have great reception to the North/Northwest, yet to the Southwest it is dead for me. Why? Well, because the signal from any ships has to not only pass through three houses, it also has to get through the three foot thick, sandstone walls of the house. The signal is wiped out.

My AIS coverage taken from MarineTraffic. Very strong to the North, but poor to the SW

Add to that that I am only a few metres above sea level and it makes my Radio Horizon not very good. You see, taking into consideration Neals data, I quite often struggle to get a small fishing boat which is between me and a large oil tanker that is further away that I am receiving. This is because, more often than not, ships radio masts are at the tallest point on a ship and an oil tankers one will be near on 60 metres above the sea, whilst a fishing boat around 10m. An oil tanker is also likely to have a more powerful transmitter as the ships size means it can carry bigger equipment.

So, where am I going here with relation to the Liman incident?

As previously stated, it has been suggested that Youzar Sif.H had switched off its AIS system. But a simple look at coverage information available on MarineTraffic would show that the Black Sea has some patches that are not covered very well by AIS receivers. I always say this about things like AIS or Mode-S feeds – they are only as good as the information that is fed to them.

The image here shows the coverage from the two main receivers for the area approaching the Bosporus from the Black Sea from this afternoon – 29th May. The receiver to the NW is on a 90m high block of flats and the one at Istanbul is on a two storey building on a hill. They have a great range because of this height. But, nearly the entire area SE of Varna is blank. These receivers do not pick up anything. Now, these coverage maps, like the density ones, can be a little false because they only work because they’ve picked something up, so the darker areas that show a dense level of traffic here, could be lighter at another time due to a quieter day – and vice-versa. But I’ve been looking at these areas frequently since the incident to see if my conclusions are correct, and they have remained pretty much the same. Further north are a few more receivers, but except for one they rarely stretch far into the Black sea – in other words there is a reception black hole for the receivers that feed MarineTraffic and AISLive. It just so happens that Youzar Sif.H travelled through the black-hole on the day of the collision.

This image shows the coverage from the Elena Station in Bulgaria which has fantastic coverage of the Black Sea in this region, but even this has reception black holes, particularly on the Youzar Sif.H route.

The image below shows the reception plots of Youzar Sif.H on the 26/27th of April on AISLive

Whilst the image here shows the reception on the 26/27th of May. This one is in fact worse than the day of the collision! It went near 14 hours without being picked up by any AIS receiver that fed AISLive.

Not only does this happen to Youzar Sif.H, it happens to many other ships that travel the same route.

This is the reason why Youzar Sif.H was not picked up until just before the collision and not because of stupid reasons such as it had switched off its AIS or been jammed by the operations of Liman. In fact, it had its AIS on at all times and other ships within its Radio Horizon would have picked it up, just as it would have picked up the other ships.

Now, the conspiracy theorists will be saying ” Well, hang on, Youzar Sif.H was tracked very well following the incident”. Well yes it was, but there’s a couple of good reasons why. Firstly, the main antennas on Youzar Sif.H are at the back of the ship but it also appears that there is one at the front on the mast. Is this the AIS antenna? Whilst it is hard to see which one it would be, if it is the one at the front this would explain a lot. The average reception distances for the stations is interesting for the day of the incident. The Elena station showed an average of 112nm which actually nearly corresponds to the site of the collision, so this station was covering out to that area. The signal from Youzar Sif.H would fade as it travelled away from the receiver. But after the accident and it was heading back to Midia, the front of the ship would have been facing the receiver which could mean a better signal getting through. The fact that on its journey back to the area this weekend produced the same tracking results, if not worse, than the incident ones shows that Youzar Sif.H has problems with being tracked in certain areas.

The station on the flats at Burgas had an average range of 26nm and would have possibly covered the early part of the voyage too.

And the Istanbul receiver only had an average of 10nm – but again this is roughly where the collision took place, and of course, Youzar Sif.H was head on to the receiver.

At the end of the day, I doubt we’ll ever find out for sure what happened. But I can honestly say that I believe it was a pure accident, and the fact that no AIS data was received from Youzar Sif.H was down to the pure science of a lack of radio reception at the AIS receivers covering the area, rather than the switching off of the systems on the ship.

One thing is for sure though. Those people that insist on churning out information, data and theories need to be sure to get their facts right first; and they need to do some basic research on things that they are commenting on. Otherwise they just make themselves look like complete idiots.

Quick LNA4ALL test

Despite the best efforts of the Royal Mail service, I have been able to get my hands on a Low Noise Amplifier created by Adam at LNA4ALL. The Royal Mail showed just how useless it is, when the parcel arrived here in the UK in just 11 hours from Croatia on February the 14th, but then not getting delivered to me until March the 14th – yes, one month! There is no surprise that courier companies such as DPD and Hermes are getting more business than the Royal Mail – they are bloody useless.

Anyway, the reason for the purchase is for a later review on an AIS dongle that I will be testing, but which has unfortunately been possibly damaged before getting to me.

So, as I had some time to spare I thought I’d run a quick test on how the LNA performs against the claims that is shown on the LNA4ALL website. For the test I used a quickly built 12v to 5v PSU that was connected to a Maplin bench PSU and also a Rigol DP711 Linear DC PSU where I could ensure a precise power input. As it was, it was good that I used the DP711 because my quick PSU was only chucking out 1.2v at connection to the LNA4ALL, despite an unconnected output of 5v – some work needed there I think.

Despite this lower power the LNA4ALL still worked with just the 1.2v input, though the results where not as good.

Other equipment used were a Rigol DSG815 Signal Generator and a Rigol DSA1030 Spectrum Analyser (no longer available), along with various Mini-Circuits shielded test cables. The Rigol equipment I purchased from Telonic Instruments Ltd last year.

Below then is a table that contains all the relevant data. As you’ll see the Gain claim is pretty much spot on with some being over. Just a couple of frequencies are below that which is claimed, especially at 28 MHz.

LNA4ALL Frequency data

A couple of things to note.

Firstly, somehow I managed to miss testing 1296 MHz. I obviously didn’t put it in the table in Excel before I started 🙂 Also, the DSG815 only goes up to 1.5 GHz so I couldn’t test above that.

Secondly I ran a test for the AIS centre frequency of 162 MHz, for which there was no comparison to the LNA4ALL data. A gain of over 24dB though shows that the LNA would be perfect for those of you with AIS receivers that may want to get better reception. To prove the theory I compared the LNA reception against data without it connected to the NASA Engine AIS receiver that I currently use. In ShipPlotter I average a max range of around 15nm without the LNA, but with it connected this increased to around 22nm. The number of messages received also tripled as it was able to dig out the weaker signals.

The NASA Engine isn’t a bad receiver, but it is a frequency hopper rather than a dual monitor, and so it changes between the two AIS frequencies every 30 seconds (161.975 MHz and 162.025 MHz). I suspect a dual monitor would give better message numbers and range.

Below is a graph made using the excellent software by Neal Arundale – NMEA AIS Router. As you can see the message numbers (or sentences) for over an hour are pretty good – well, it is a vast improvement on what I used to get with my current “temporary” set-up, with 419 messages received in an hour. The software is available at his website, for free, along with various other programs that you can use with AIS. If you’d rather not use ShipPlotter he has created his own AIS Decoder which can be linked into Google Earth and such like. Visit his website for more information.

My antenna isn’t exactly top-notch. It is at a height of just 4 metres AGL in the extension loft, and it is made from galvanised steel angle bead used by plasterers to strengthen corners prior to skimming – this I cut down as a dipole for a target of 162 MHz. As usual with my trimming of antennas, I cut just too much off and ended up with it cut to 161.167 MHz. It gives a VSWR of 1.018 and Return loss of 40.82dB, with 162 MHz being approx. 30dB Return loss which equates to 1.075 VSWR – that will do.

Also, as I live right on the coast, about 50 metres from the sea, I’m practically at sea level, which doesn’t help much with range and signal reception either. Despite this the antenna produces great results, though it is just temporary until I can get a new homebuild up on the roof.

VSWR reading for the homebrew loft AIS Antenna

The LNA4ALL retails at various prices depending on what option you go for. I went for the aluminium box version so it was around £54 including the delivery. I had looked at a Mini-circuits equivalent, and when it looked like the LNA4ALL was lost I did actually order one. But this was nearly twice the price, and seeing as the LNA4ALL contains many components from Mini-Circuit I doubt it is any different really.

All in all the LNA4ALL is all you need to boost your weak signals – couldn’t get any more all’s in 🙂

Mini-Circuits and Stamps

mcl_top_banner

I recently received a global email from Mini-Circuits CEO, Harvey Kaylie, informing me of a Holiday Season discount. A copy of the email is below:

To our valued friends and customers,

To say thank you for making 2016 a successful year, we’re pleased to announce a special Holiday Season Discount:
All purchases of any quantity of Mini-Circuits catalog models ordered and shipped from our webstore on minicircuits.com from December 1st through December 31st will receive a 10% discount!

The discount will appear for items in your shopping cart on our webstore checkout page at the time of purchase. Please see our website for terms and conditions. This offer expires on December 31st, so don’t miss out!

From all the members of the Mini-Circuits family to all of you, our customers, we wish you a very happy, healthy holiday season!
Warm regards,

Harvey Kaylie
Founder and CEO
Mini-Circuits

I have checked with the UK supplier and I can confirm that the discount is available outside of the USA. Just order what you want as normal through the Mini-Circuits website.

Mini-Circuits components

Some of the components I have bought from Mini-Circuits this year

I bought some leads and components a few months ago and have been impressed with the quality of each item. The service from the UK supplier was excellent, especially as I had to change the order part way through the processing. All the components came from the USA, but the delay was minimal.

If you need some new components then get in there quick for the 10% discount.

 

Stamps of Radio Stations by Continents and Countries

At the end of November the SWLing blog had a post about collecting postage stamps with a connection to radio.

I’m by no means a proper stamp collector but the reason I found the blog of interest was because in August I had actually bought some First Day Covers and a Mint set of stamps commemorating 50 years of the BBC on Ascension Island. I had been stationed on Ascension in the 90’s whilst in the RAF and I spent quite a lot of my days off at English Bay beach which is right next to the transmitter site. Plenty of good memories.

The SWLing blog was about a Word document created by Lennart Weirell of Sweden. He has been able to collate a list of all the stamps that has a connection with Broadcast Radio and turn it into a twenty-four page document. It lists the 125 countries that have produced such stamps and the information includes date of issue, the Michael number, value (at issue) and name of the stamp. There are also tick boxes so that you can mark off whether you have these stamps in your collection. stamps

It doesn’t say this in the document but you can however go one step further than the tick boxes. If you have a scanner, just scan your stamps into a picture folder and then create a link to each relevant picture in the Word document. It’s as simple as highlighting the stamp name for example and then clicking on the Hyperlink button in the Insert tab group of Word (you can also use the Control-K shortcut). Just find the picture folder and the scanned image and link them up. As long as you don’t change the image location, each time you go to the Word document, clicking on the link will open it up.

The Word document is €4, but contact Lennart by email first so that he can send you a PayPal invoice. His email address and further information about the document is available on the image above.

The 50 years of the BBC stamps are available from the Ascension Island Post Office website.

First day cover

A scan of my First Day Cover “50 years of the BBC on Ascension Island” stamps

Recent published work and photography processes

It’s been a busy six months or so for me with regards to having work published.

My main work has been the continuous analysis of the Russian navy to assist the editor of Fighting Ships, Stephen Saunders, to keep the data in the yearbook as accurate and up to date as possible. This information is also used in the on-line version of the yearbook. The current 2016/2017 edition is now available with plenty of my Russian navy data included, along with photos that I’ve taken. jfs2016_001

As you know I stopped selling the yearbooks last year (apart from a large sale at the beginning of this year) and since then IHS have added older titles to their online store. Though not as cheap as I was able to get them, it may be worth taking a look to see if there’s any titles you may need in your collection. Here’s the link to the Fighting Ships page in the store.

As with all things involved with data analysis, looking into one thing generally off-shoots into another. From the OSINT work that I generally do for Fighting Ships, I normally have to take notes and data which would also fit into some of the other yearbooks. Some of this data has been sent to the various editors of the C4ISR yearbooks, which I hope will also be included in future publications. And there’s also photographs of radars, weapons and other systems that I’ve been taking over the last few years that hopefully will also be of use.

jir_july_001 jir_aug_001

 

 

 

 

 

 

 

The OSINT work also brought me to the attention of one of the IHS magazines, Jane’s Intelligence Review. Since May I have worked on three articles for this magazine, two in conjunction with other writers, and one on my own. I am currently working on two more pieces for them, but at this time I can’t divulge on the subject matter. jir_sep_001

The work has been very interesting indeed, and has brought me a couple of new acquaintances and friends from it. I’m hoping that that I can carry on with other articles for them once the two I’m working on now are complete. jir_aug_002

 
Another magazine by IHS, Jane’s Navy International, has used a couple of my photos in recent months with hopefully more to follow. The magazines can be subscribed to from the IHS magazine online store.

It’s good work editing images for magazines, but its certainly a lot harder than it used to be – in general for less money than what you used to receive. The advent of digital photography has reduced the prices one gets for inclusion in magazines, mainly due to the fact that so many people now do it and so the editors have a plethora of images available to them. The silly thing is that in the old days you used to only take the photo, normally on slide film (Kodachrome 64), with no further editing by yourself (unless you happened to process the images in your own darkroom – I didn’t!). You’d send away the film to Kodak who would process it for you, and then you’d check over the slides after they’d been returned, deciding on which ones to send away. The only real work needed was to annotate the slide with basic information, and include a letter with further notes and where to post the cheque payment if used. Of course, you’d never see the slide again, and so if you wanted to have a copy for yourself then you’d need to take two photos – it was costly business using slide hence the payments you received being greater than they are now for far less work (one trip to the USA cost me more in Kodachrome 64 than it did in flights!!).

These days, the full photo process takes much longer.

Take the recent Joint Warrior (JW) exercise that I photographed. For this exercise I set aside two days for the actual photography. I then needed a further four days to carry out the actual editing of the photos for various publications! With current copyright laws, and the fact that most publishers are aware that photographers send away the very same image for inclusion in different magazines, the publishers now insist on exclusivity with an image (including publication online). Because of this, as a photographer you have to think ahead about who you are taking photos for. With JW I was thinking of three main possible targets – Fighting Ships, Jane’s Navy International and Warships IFR. As well as these I also had to think about the various other yearbooks by IHS (C4ISR and Weapons). So, if one ship comes along I need to take at least three images of it, maybe milliseconds apart, to cover the three main publications. Multiply that by a few hundred and you can see that there is a lot of images to go through once back home.

Back home then, I now need to process the images myself – no longer do they go away to Kodak for initial processing, and the publication no longer fine tunes the image for what ever use they may have. You need to trim it, get the exposure and colours right and make sure it’s sharp. Not only do you need to edit each image, you also have to include additional information for each one. This needs to be a title, your name, copyrights, what the subject is, when and where you took it and any other information you may think is needed for the publisher. With over 400 photos to go through for this JW it took a lot of time to carry out the whole process – 4 days as I’ve already said. From the 400 or more images that I took, I sent away around 70. How many of those will finally end up being published is unknown but I hope that it is around half of them.

Saying all that, it really is good fun and I still enjoy seeing my photos in any publication, be it book or magazine. I recently bought a new gadget for my GoPro, a time-lapse timer that moves the camera, and I decided to test it out whilst editing one of the images taken at Joint Warrior. The result of that test is below:
 

 

wifr_001 Talking of having things published in Warships IFR, I have actually had quite a good amount put into print for this magazine recently. And I believe there is to be a good spread in the December edition with images taken from the Joint Warrior exercise that I have mentioned above. I also hope to start writing the occasional piece for the magazine.

I’ll keep you informed.

TitanSDR Pro demonstration

After receiving quite a few requests on information about the Enablia TitanSDR and it’s capabilities, I decided it would be good a good idea to create a demonstration video that would hopefully show just how good an SDR it is. The video is at the end of this blog.

I think that a lot of people can’t understand just why the two versions are the price they are, especially when it seems that a new dongle SDR is being evolved every day at a ridiculously cheap price. Yes, they are expensive but when you compare the price of these SDR’s to a top end desktop receiver, such as the Icom IC-R8500 for example, then it is fairly comparable.

But you must consider the fact that the Titan is really more than one receiver. The Pro version is 40 receivers, the standard is eight. You can’t record independently using the Icom, you need some additional software or a digital voice recorder plugged in to the receiver; and even then you can only record the one frequency – the Pro can record 40 frequencies, the standard can record eight.

The TitanSDR Pro can monitor up to 40 frequencies at the same time. Here, 10 frequencies are being monitored, mainly Oceanic ones.

The TitanSDR Pro can monitor up to 40 frequencies at the same time. Here, 10 frequencies are being monitored, mainly Oceanic ones.

Then, you can’t really record any bandwidth to play back using the Icom, but both versions of the Titan can record up to three separate bandwidths. These can then be played back, either through the SDR itself, or on another PC using the supplied USB dongle that carries a second version of the software – and if you did this you could be listening to, or recording, further frequencies or bandwidths. And all these separate bandwidth recordings can, of course, be played back multiple times, with multiple recordings being made within them; or data can be decoded; or signals analysed – what ever you require from an SDR.

This image shows the Titan monitoring 12 frequencies, 6 of which are decoding ALE using PC-ALE. This can take place in the background, while listening to the other frequencies on the SDR.

This image shows the Titan monitoring 12 frequencies, 6 of which are decoding ALE using PC-ALE. This can take place in the background, while listening to the other frequencies on the SDR.

But, of course, this is just standard for any SDR isn’t it?? But is it?? Can you think of another SDR that has the capability to monitor/record 40 frequencies at once? I can’t.

The nearest SDR I found to the Titan in quality of not only recording capabilities but in quality of filters etc. meant that I would need to buy around 13 SDR’s of this model and spend over €30,000. Yet, just one of this model costs pretty much the same price as the Titan. Now, with that knowledge, the price of the TitanSDR’s really doesn’t seem that bad after all.

Don’t forget, the TitanSDR is a Military spec. SDR, designed originally for agencies to monitor multiple frequencies for analysis and data collecting. It already has top specifications but Enablia are still willing to listen to the users and add requested features if they can. They have already done this with quite a few ideas that myself and other users have suggested.

You'd think that the Titan would be a CPU guzzler wouldn't you? Well it isn't. Here the SDR is running 31 frequencies, multiple decodings using MultiPSK, and PC-ALE. The CPU is running at only 27%, and that was it's max reading.

You’d think that the Titan would be a CPU guzzler wouldn’t you? Well it isn’t. Here the SDR is running 31 frequencies, whilst making multiple decodings using MultiPSK and PC-ALE. The CPU is running at only 27%, and that was it’s max reading.

 

Roland Proesch Radio Monitoring books 2015

Roland Proesch has recently updated his books on Radio monitoring.

Published in the last month or so, the four books are great additions to your bookshelves and priced at 49Euros each plus postage. He does do bundle offers if you’re thinking of buying more than one of the titles.

The titles are:
Technical Handbook for Radio Monitoring HF
Technical Handbook for Radio Monitoring VHF/UHF
Signal Analysis for Radio Monitoring
Frequency Handbook for Radio Monitoring HF

CoverTechnicalHandbook2013_1EI reviewed the 2013 edition of Radio Monitoring HF in March 2014.

Roland provided me with a PDF of the changes and additions to the books which you can find here:
New in Technical Handbooks

For more information on prices and examples from the books head over to Roland’s website

I will hopefully be reviewing three other radio monitoring books by three different authors in the next month:
Professioneller Kurzwellenfunk by Nils Schiffhauer
Spezial-Frequenzliste 2015/16 by Michael Marten
International Call Sign Handbook by Larry Van Horn

PlaneBaseNG

I promised the owners of PlaneBaseNG that I’d add something about their aviation database to my blog about a year and a half ago, but due to personal issues and renovating my house I never got round to it. As it is though, I’m glad I didn’t because the database has changed so much since then I’d have had to have done blog updates practically every month since.

But, as it’s nearing the two year anniversary of it’s conception I thought now would be the right time. PBlogo

So what is PlaneBaseNG? In the words of its owners “PlaneBaseNG is a fully featured product that manages all your aircraft sighting logging and reporting needs” and I’m not going to say otherwise. It is a great aircraft database, much better than any others around at the moment. It is simple to use, the search features are great and it has the easiest logging features I’ve seen. And most importantly it’s free – though you can donate money to help with its development if you wish, it’s totally optional.

PlaneBaseNG (or PB from now on) was developed after a few people got fed up with other databases out there. In particular, there was one that hadn’t changed for quite some time. I used this (unnamed) database and can vouch that it was good at first but very quickly went out of date in its development and style. Not only that, despite saying they would listen to their customers and add features where possible, this just never happened. In my opinion, though not proven, I think that the owners of the (unnamed) database used the funds from the subscribers to travel the world planespotting. The initial purchase wasn’t cheap (currently £130), and there were yearly subscription fees for the weekly updates – I mean, they even charged the poor data inputters the yearly subscription fees despite having to spend hours updating the data. Yep, I know this because I was a data inputter for them for a (very) short while. Handily enough all the fixed “books” for trips, created from search features, happened to be of the favourite trip locations of the owners. Requests for user created “books” fell on deaf ears.

I soon realised they weren’t for listening to anyone when I gave them some advice on making the data input easier. There were countless errors in Operator names, or should I say countless different versions of names for the same Operator – Delta Airlines/Delta Air Lines etc. This was because each editor had a crib sheet instead of having a much more useful sub-database containing the definitive list of Operators that could be chosen from a drop down list. It was easy to implement but it wasn’t and I got frustrated – as a user, searches were a nightmare as the data was quite often wrong. So I left editing but carried on with the database as there were no other options out there – except creating your own (which I had done and it was much better than this (unnamed) database, but as a single data-inputter going through Aviation Letter each month was very time consuming and so I had had to give up). planebase

I was pleased to hear, about two years ago, that there was a new database coming out; and I was lucky enough to be one of the early users as I knew a few of the guys involved, some of which had also left the other database. PB changed very quickly in the early days, with almost daily updates to the actual software and features. This has slowed down now but that is because it is features packed, and I don’t know if there’s anything else PB can produce or think of that’s needed. Just some of the features included are:
Search facilities for Reg, Manufacturer, Type, Operator, Mode-S hexcodes, SelCal, Base, ICAO Operator codes
Multiple User creatable Reports
Wordbook (to create a handy needlist when travelling)
Adding photos to records
Flight logs

And much more – full information of all the features are on their website and in the extensive manual (something else the (unnamed) database fell short with, being four to five years out of date when I last saw it).

The database isn’t just for “spotters”, it can be used by anyone that is interested in aviation. For instance the SelCal search is useful to those that listen to HF regularly and need to check on what they’ve possibly heard. The same goes for checking details on Operators or Squadron details – the searches are endless really. Updates to the database occur twice a week, with a full update on a Tuesday and an additional Airliner/Execs update on Fridays. The database itself contains well over a million entries in categories of Airliners, Executive Jets and Propliners, Military (fighter/transports/Helis etc), Helicopters, Russians and GA types – you name it, they’re in there – even gliders. And if there’s something that’s not in there, a quick email and I’m sure it wouldn’t be long before it was.

pblinkNow on to PB’s sidekick – PBLink. This feature is for those that use either SBS or PlanePlotter virtual radars. It is a separate download that adds a background link to PB so that when you get an unknown Hexcode appearing on your radar a check is made with the main database and the details filled out in the SQB file for the radar. Before hand I had to use the Gatwick Aviation Societies (GAS) data, but that required access to the internet. The great thing about PBLink is that an on-line connection isn’t needed, making it possible to go fully mobile with your SBS. I tried it out last year at LAX, from the back of my hire-car and it worked perfectly, along with being able to log what I saw. There’s even the possibility to download a fully populated SQB file (overwriting your current one) which means you don’t need PB installed at all. I don’t bother with that as there’s no real point if you use PB as well (plus I use specific flags and file names for these which would get wiped out I think). As it’s linked to your database it also shows whether you’ve seen the aircraft before and if so, where and when.

Again, there’s plenty more details on the website and in the PBLink manual. It’s pointless me saying anymore, I’d only repeat what is in it and probably in not as much detail.

pbliteFinally, the last manifestation of PB is PBLite. This is designed for Windows based tablets and is an almost exact copy of the full PB database. One thing that’s great about this software is that if you use the full version on your PC or laptop, you can copy across your logs/sightings to the tablet. And just to add, this also possible if you have a desktop and a laptop – your loggings can be copied between the two as and when.

I like PlaneBaseNG a lot, I use it daily and not just for the spotting side of things. I use it for radio monitoring, and I use it to confirm information when I’m writing my blogs and magazine articles. With over 1000 users already, I’m obviously not the only one that thinks it is a great product.

All I’ll say is, go and take a look at the website for PlaneBaseNG and you’ll see many more features – some I haven’t even tried yet. Meanwhile, over at the (unnamed) database, despite a nice new glitzy website – it’s still the same old database by the look of the screenshots.