Mini-Circuits and Stamps

mcl_top_banner

I recently received a global email from Mini-Circuits CEO, Harvey Kaylie, informing me of a Holiday Season discount. A copy of the email is below:

To our valued friends and customers,

To say thank you for making 2016 a successful year, we’re pleased to announce a special Holiday Season Discount:
All purchases of any quantity of Mini-Circuits catalog models ordered and shipped from our webstore on minicircuits.com from December 1st through December 31st will receive a 10% discount!

The discount will appear for items in your shopping cart on our webstore checkout page at the time of purchase. Please see our website for terms and conditions. This offer expires on December 31st, so don’t miss out!

From all the members of the Mini-Circuits family to all of you, our customers, we wish you a very happy, healthy holiday season!
Warm regards,

Harvey Kaylie
Founder and CEO
Mini-Circuits

I have checked with the UK supplier and I can confirm that the discount is available outside of the USA. Just order what you want as normal through the Mini-Circuits website.

Mini-Circuits components

Some of the components I have bought from Mini-Circuits this year

I bought some leads and components a few months ago and have been impressed with the quality of each item. The service from the UK supplier was excellent, especially as I had to change the order part way through the processing. All the components came from the USA, but the delay was minimal.

If you need some new components then get in there quick for the 10% discount.

 

Stamps of Radio Stations by Continents and Countries

At the end of November the SWLing blog had a post about collecting postage stamps with a connection to radio.

I’m by no means a proper stamp collector but the reason I found the blog of interest was because in August I had actually bought some First Day Covers and a Mint set of stamps commemorating 50 years of the BBC on Ascension Island. I had been stationed on Ascension in the 90’s whilst in the RAF and I spent quite a lot of my days off at English Bay beach which is right next to the transmitter site. Plenty of good memories.

The SWLing blog was about a Word document created by Lennart Weirell of Sweden. He has been able to collate a list of all the stamps that has a connection with Broadcast Radio and turn it into a twenty-four page document. It lists the 125 countries that have produced such stamps and the information includes date of issue, the Michael number, value (at issue) and name of the stamp. There are also tick boxes so that you can mark off whether you have these stamps in your collection. stamps

It doesn’t say this in the document but you can however go one step further than the tick boxes. If you have a scanner, just scan your stamps into a picture folder and then create a link to each relevant picture in the Word document. It’s as simple as highlighting the stamp name for example and then clicking on the Hyperlink button in the Insert tab group of Word (you can also use the Control-K shortcut). Just find the picture folder and the scanned image and link them up. As long as you don’t change the image location, each time you go to the Word document, clicking on the link will open it up.

The Word document is €4, but contact Lennart by email first so that he can send you a PayPal invoice. His email address and further information about the document is available on the image above.

The 50 years of the BBC stamps are available from the Ascension Island Post Office website.

First day cover

A scan of my First Day Cover “50 years of the BBC on Ascension Island” stamps

February’s Blackjacks

After a couple of days of teasing us with the standard “W” markers in CW, on the 17th February the Russian Air Force (Военно-воздушные cилы России [BBC России]) carried out a Long Range Aviation mission using two Tu-160 Blackjacks.

I was able to monitor nearly the whole mission on HF (both in CW and Voice USB), with a small amount on UHF (though no Russian Air to Air voice comms were received on VHF/UHF) and following some investigation into my data along with other logs and reports from the internet and friends, I can now compile a rough idea of the routing they took on their journey to the English Channel and back again.

The first reception I had that showed a mission was taking place was at around 0830z when a standard 3 figure group message was sent by IWV4 but unfortunately I was just setting up my gear and so missed it to write down. Further “W” markers took place at the usual every 20 minute schedule of 0840z and 0900z, with IWV4 sending another message at 0903z to the aircraft. This call gave us the CW callsign for the aircraft, probably the IL-78 Midas4YMA

Russian Air Force TU-160 Blackjack RF-94104 “Alexander Golovanov” © Crown copyright 2016

As is standard, the early part of the mission was relatively quiet on CW with markers only, though there was one unusual thing that took place around 0920z. Firstly there was no 0920z “W” (this only happened one other time for the whole day at 1600z – the 20 mins schedule was kept going solidly otherwise) and secondly, at 0922z, there was a sending of data on the frequency. The first eight minutes was a carrier tone centred exactly on 8112; with the full data commencing at 0930z continuing until 0943z. Unfortunately, the CW recording I had for the day got corrupted so I wasn’t able to analyse the signal to at least try and determine what type it may have been. Of course, it could have been coincidence as we all know that many of the frequencies used by the Russians are shared, but this does seem almost too good a coincidence. One thing is noteworthy in recent missions, and that is the big reduction in CW messages over the large increase of voice messages – are the Russians trying out a new data messaging system for their Long Range Aviation fleet?

8112 continued in the usual manner for most of the morning, with the occasional message or “radio check” [QSA] but there wasn’t much else. The Winter CW frequency for the aircraft side of the “Bear Net” had always alluded us and was in fact the only missing frequency we had for the whole net, so it was just the ground side of the duplex network that I was receiving. I had 8990 down as a back-up frequency for their voice comms and I was monitoring this frequency on my Icom IC-R8500 in USB mode, with all the remaining Winter frequencies on the Titan SDR Pro. I was also using the Titan to monitor most of the Oceanic frequencies in case they were coming this way, something useful to do as this can sometimes give away the rough position of the Russians. Because of this set-up I had the SDR monitoring the Oceanic frequencies in the 8MHz range. The bandwidth I’d allocated also incorporated 8990 and it was during a QSA check at 1205z from IWV4 on 8112 that I noticed a faint trace of CW on the frequency! I quickly changed the mode on the Icom to CW and caught the end – “QSA3” – nothing else followed, but it looked like I had found the Winter CW airborne frequency for the “Bear Net”. But, I had to be sure.

Russian Air Force TU-160 Blackjack RF-94101 “Paval Taran” © Crown copyright 2016

Up until now there had been zero voice comms on 8131, the primary Winter voice frequency, but not too long after the 1205z QSA check on CW the first call came with 44732 calling KATOLIK followed by a call to BALANS after not much luck with KATOLIK. There was one more call after this on 8112 before this frequency went to markers only, but there was a reply on 8990 confirming that this was the Winter CW frequency for the aircraft. The complete 8112/8990 transcript can be found in PDF format in my full CW log

Going from various reports, the Northern QRA had not launched so this led me to believe that the Russian aircraft were not coming in the direction of the UK, but when I noticed on my SBS that the Tanker was travelling north from Brize Norton, then I wondered if they were. The only comms I had was from the Tanker with Swanwick Mil so I presume (and with no logs showing anything from Lossiemouth) that a long range track of the Blackjacks was taking place.

Certainly, on Oceanic warnings were being passed about the “unknown” traffic heading south and it’s from this information that I’ve been able to roughly guess their initial routing, down through the Shetland Island and Faeroe Island gap to near ERAKA, before tracking south along the 10W line – like I say, a rough guess, but going on previous routes this won’t be far out. They probably got to around the NIBOG area before tracking SW to go around Ireland, before heading in again towards Lands End and the English Channel.

Voice comms on HF with BALANS was pretty continuous by this stage, with three potential callsigns heard. Two would have been the Blackjacks, 44731 and 44732, with a third more than likely the support IL-78 Midas tanker that remained clear up to the north and so was much weaker with me – I think it was 60991 but was too weak to tell, with only the readback from BALANS copied.

At about 1505z it was reported that two Typhoons from Coningsby that had launched about an hour before, and had been holding in ARA10W, had joined up with the “unknowns” and these were identified as Tu-160 Blackjacks. The comms were again picked up by Kyle, and the Typhoons gave full details including the tailcodes, with the lead aircraft being RF-94101, the second RF-94104. The Russians name their Tu-160’s and these are given “Paval Taran” and “Alexander Golovanov” respectively.

By coincidence, at 1510z, 44732 calls BALANS with a message starting 502. I always suspect that they send messages out when they’re intercepted and I expect this was one of those messages. It could well have been that they were entering the Channel though, it’s hard to tell, but certainly for the whole time they were in that area, the messages sent began with 502. Around 1600z the French QRA also joined up and from images produced by the MOD, these were shown to be a single Rafale and a single Mirage 2000C – callsigns noted on Fighter Control as MASTIFF01 and MARAUD03.

Russian Air Force TU-160 Blackjack RF-94104 with a French Air Force Rafale and Mirage 2000C © Crown copyright 2016

From there the Blackjacks turned around and I expect pretty much followed the same route back. I could certainly tell that they were near to me later on, they were ridiculously loud on HF.

Below then is a copy of my voice logs, along with the recordings I made. A good test of my recently installed Wellbrook Loop that I’d finally been able to put up on the mast just the week before, after having it for nearly three months! Scottish weather!!

NOTE – These recordings are copyrighted to me. It has been noted that other recordings have ended up on YouTube, uploaded by a third party. Should this happen with my recordings, further action will be taken

8131

1216z 44732 calls KATOLIK

1217z 44732 calls KATOLIK [KATOLIK very faint]

1218z 44732 calls KATOLIK, BALANS replies

1220z BALANS passes message 130 525

1222z BALANS calls 44731 numerous times
– Note, contains all of the above

1226z 44732 answers, BALANS passes message 130 525

1232z 44732 calls BALANS with message [too faint to copy]

[messages continue until 1245z, all too faint, multiple callsigns]

1302z 44732 calls BALANS with message 157 133 796 290 525 853

1306z BALANS and 60991[?] 532 598 757 706 057 162 363 395

1318z BALANS passes message 727 to 44732

1356z 44732 calls BALANS with message 197 077 950 525 305

1510z 44732 calls BALANS with message 502 549 447 360 981 848 842 366 215 492 481

1551z 44732 calls BALANS with message 502 956 447 339 822 532 842 942 563 592 339

1612z 44732 calls BALANS with message 502 411 447 132 196 010 565 564 978

1641z 44732 calls BALANS with message 926 429 564 695 525 447

1745z 44731 called by BALANS

1750z BALANS calls 44731 with message 861 408 850

1826z 44732 calls BALANS with message 976 170 408 953 525 055

160217map

Approximate routing of the Tu-160 Blackjacks

One final thing to note – on exactly the same day in 2015 (day of the year, not actual date, so the third Wednesday in February) the Russians carried out almost the same flight, going down the West coast of Ireland. Further information on that mission, including HF recordings, can be found in Bear Hunting – part two

Bet you a few quid they’ll be back same day next year 😉

TitanSDR Pro demonstration

After receiving quite a few requests on information about the Enablia TitanSDR and it’s capabilities, I decided it would be good a good idea to create a demonstration video that would hopefully show just how good an SDR it is. The video is at the end of this blog.

I think that a lot of people can’t understand just why the two versions are the price they are, especially when it seems that a new dongle SDR is being evolved every day at a ridiculously cheap price. Yes, they are expensive but when you compare the price of these SDR’s to a top end desktop receiver, such as the Icom IC-R8500 for example, then it is fairly comparable.

But you must consider the fact that the Titan is really more than one receiver. The Pro version is 40 receivers, the standard is eight. You can’t record independently using the Icom, you need some additional software or a digital voice recorder plugged in to the receiver; and even then you can only record the one frequency – the Pro can record 40 frequencies, the standard can record eight.

The TitanSDR Pro can monitor up to 40 frequencies at the same time. Here, 10 frequencies are being monitored, mainly Oceanic ones.

The TitanSDR Pro can monitor up to 40 frequencies at the same time. Here, 10 frequencies are being monitored, mainly Oceanic ones.

Then, you can’t really record any bandwidth to play back using the Icom, but both versions of the Titan can record up to three separate bandwidths. These can then be played back, either through the SDR itself, or on another PC using the supplied USB dongle that carries a second version of the software – and if you did this you could be listening to, or recording, further frequencies or bandwidths. And all these separate bandwidth recordings can, of course, be played back multiple times, with multiple recordings being made within them; or data can be decoded; or signals analysed – what ever you require from an SDR.

This image shows the Titan monitoring 12 frequencies, 6 of which are decoding ALE using PC-ALE. This can take place in the background, while listening to the other frequencies on the SDR.

This image shows the Titan monitoring 12 frequencies, 6 of which are decoding ALE using PC-ALE. This can take place in the background, while listening to the other frequencies on the SDR.

But, of course, this is just standard for any SDR isn’t it?? But is it?? Can you think of another SDR that has the capability to monitor/record 40 frequencies at once? I can’t.

The nearest SDR I found to the Titan in quality of not only recording capabilities but in quality of filters etc. meant that I would need to buy around 13 SDR’s of this model and spend over €30,000. Yet, just one of this model costs pretty much the same price as the Titan. Now, with that knowledge, the price of the TitanSDR’s really doesn’t seem that bad after all.

Don’t forget, the TitanSDR is a Military spec. SDR, designed originally for agencies to monitor multiple frequencies for analysis and data collecting. It already has top specifications but Enablia are still willing to listen to the users and add requested features if they can. They have already done this with quite a few ideas that myself and other users have suggested.

You'd think that the Titan would be a CPU guzzler wouldn't you? Well it isn't. Here the SDR is running 31 frequencies, multiple decodings using MultiPSK, and PC-ALE. The CPU is running at only 27%, and that was it's max reading.

You’d think that the Titan would be a CPU guzzler wouldn’t you? Well it isn’t. Here the SDR is running 31 frequencies, whilst making multiple decodings using MultiPSK and PC-ALE. The CPU is running at only 27%, and that was it’s max reading.

 

Roland Proesch Radio Monitoring books 2015

Roland Proesch has recently updated his books on Radio monitoring.

Published in the last month or so, the four books are great additions to your bookshelves and priced at 49Euros each plus postage. He does do bundle offers if you’re thinking of buying more than one of the titles.

The titles are:
Technical Handbook for Radio Monitoring HF
Technical Handbook for Radio Monitoring VHF/UHF
Signal Analysis for Radio Monitoring
Frequency Handbook for Radio Monitoring HF

CoverTechnicalHandbook2013_1EI reviewed the 2013 edition of Radio Monitoring HF in March 2014.

Roland provided me with a PDF of the changes and additions to the books which you can find here:
New in Technical Handbooks

For more information on prices and examples from the books head over to Roland’s website

I will hopefully be reviewing three other radio monitoring books by three different authors in the next month:
Professioneller Kurzwellenfunk by Nils Schiffhauer
Spezial-Frequenzliste 2015/16 by Michael Marten
International Call Sign Handbook by Larry Van Horn

PlaneBaseNG

I promised the owners of PlaneBaseNG that I’d add something about their aviation database to my blog about a year and a half ago, but due to personal issues and renovating my house I never got round to it. As it is though, I’m glad I didn’t because the database has changed so much since then I’d have had to have done blog updates practically every month since.

But, as it’s nearing the two year anniversary of it’s conception I thought now would be the right time. PBlogo

So what is PlaneBaseNG? In the words of its owners “PlaneBaseNG is a fully featured product that manages all your aircraft sighting logging and reporting needs” and I’m not going to say otherwise. It is a great aircraft database, much better than any others around at the moment. It is simple to use, the search features are great and it has the easiest logging features I’ve seen. And most importantly it’s free – though you can donate money to help with its development if you wish, it’s totally optional.

PlaneBaseNG (or PB from now on) was developed after a few people got fed up with other databases out there. In particular, there was one that hadn’t changed for quite some time. I used this (unnamed) database and can vouch that it was good at first but very quickly went out of date in its development and style. Not only that, despite saying they would listen to their customers and add features where possible, this just never happened. In my opinion, though not proven, I think that the owners of the (unnamed) database used the funds from the subscribers to travel the world planespotting. The initial purchase wasn’t cheap (currently £130), and there were yearly subscription fees for the weekly updates – I mean, they even charged the poor data inputters the yearly subscription fees despite having to spend hours updating the data. Yep, I know this because I was a data inputter for them for a (very) short while. Handily enough all the fixed “books” for trips, created from search features, happened to be of the favourite trip locations of the owners. Requests for user created “books” fell on deaf ears.

I soon realised they weren’t for listening to anyone when I gave them some advice on making the data input easier. There were countless errors in Operator names, or should I say countless different versions of names for the same Operator – Delta Airlines/Delta Air Lines etc. This was because each editor had a crib sheet instead of having a much more useful sub-database containing the definitive list of Operators that could be chosen from a drop down list. It was easy to implement but it wasn’t and I got frustrated – as a user, searches were a nightmare as the data was quite often wrong. So I left editing but carried on with the database as there were no other options out there – except creating your own (which I had done and it was much better than this (unnamed) database, but as a single data-inputter going through Aviation Letter each month was very time consuming and so I had had to give up). planebase

I was pleased to hear, about two years ago, that there was a new database coming out; and I was lucky enough to be one of the early users as I knew a few of the guys involved, some of which had also left the other database. PB changed very quickly in the early days, with almost daily updates to the actual software and features. This has slowed down now but that is because it is features packed, and I don’t know if there’s anything else PB can produce or think of that’s needed. Just some of the features included are:
Search facilities for Reg, Manufacturer, Type, Operator, Mode-S hexcodes, SelCal, Base, ICAO Operator codes
Multiple User creatable Reports
Wordbook (to create a handy needlist when travelling)
Adding photos to records
Flight logs

And much more – full information of all the features are on their website and in the extensive manual (something else the (unnamed) database fell short with, being four to five years out of date when I last saw it).

The database isn’t just for “spotters”, it can be used by anyone that is interested in aviation. For instance the SelCal search is useful to those that listen to HF regularly and need to check on what they’ve possibly heard. The same goes for checking details on Operators or Squadron details – the searches are endless really. Updates to the database occur twice a week, with a full update on a Tuesday and an additional Airliner/Execs update on Fridays. The database itself contains well over a million entries in categories of Airliners, Executive Jets and Propliners, Military (fighter/transports/Helis etc), Helicopters, Russians and GA types – you name it, they’re in there – even gliders. And if there’s something that’s not in there, a quick email and I’m sure it wouldn’t be long before it was.

pblinkNow on to PB’s sidekick – PBLink. This feature is for those that use either SBS or PlanePlotter virtual radars. It is a separate download that adds a background link to PB so that when you get an unknown Hexcode appearing on your radar a check is made with the main database and the details filled out in the SQB file for the radar. Before hand I had to use the Gatwick Aviation Societies (GAS) data, but that required access to the internet. The great thing about PBLink is that an on-line connection isn’t needed, making it possible to go fully mobile with your SBS. I tried it out last year at LAX, from the back of my hire-car and it worked perfectly, along with being able to log what I saw. There’s even the possibility to download a fully populated SQB file (overwriting your current one) which means you don’t need PB installed at all. I don’t bother with that as there’s no real point if you use PB as well (plus I use specific flags and file names for these which would get wiped out I think). As it’s linked to your database it also shows whether you’ve seen the aircraft before and if so, where and when.

Again, there’s plenty more details on the website and in the PBLink manual. It’s pointless me saying anymore, I’d only repeat what is in it and probably in not as much detail.

pbliteFinally, the last manifestation of PB is PBLite. This is designed for Windows based tablets and is an almost exact copy of the full PB database. One thing that’s great about this software is that if you use the full version on your PC or laptop, you can copy across your logs/sightings to the tablet. And just to add, this also possible if you have a desktop and a laptop – your loggings can be copied between the two as and when.

I like PlaneBaseNG a lot, I use it daily and not just for the spotting side of things. I use it for radio monitoring, and I use it to confirm information when I’m writing my blogs and magazine articles. With over 1000 users already, I’m obviously not the only one that thinks it is a great product.

All I’ll say is, go and take a look at the website for PlaneBaseNG and you’ll see many more features – some I haven’t even tried yet. Meanwhile, over at the (unnamed) database, despite a nice new glitzy website – it’s still the same old database by the look of the screenshots.

Bear Hunting – part two

Well it appears I may have been wrong about the previous mission in January by the Russian Bears and their routing down the English Channel – though there is still no hard evidence this did happen. But, for now then I will accept that it did unless proven otherwise.

On February the 18th the Russians carried out another flight down the west coast of Ireland, outside any sovereign airspace and this time causing less disruption than in January. That isn’t to say there wasn’t some traffic information given by Shanwick and Shannon about unknown traffic.

Kyle, aged 15, a member of a closed forum I’m in, was able to pick up some good comms from the Typhoons, including confirmation of the tail numbers of the two Bears:
Lead aircraft = RF-94130 (24 Red)
Second aircraft = RF-94116 (28 [Red])

Personally I didn’t get much but what I do have is available here:

NOTE – These recordings are copyrighted to me. It has been noticed that other recordings have ended up on YouTube, uploaded by a third party. Should this happen with my recordings, further action will be taken

8131Khz – 1744z 51131 calls BALANS with message
531 027 103 572 874 960 825 069 068 549 290

1747z KATOLIK calls 51131 for the message too

8131kHz – 1805z 51131 calls BALANS with message
531 640 103 931 345 097 830 872

Note that the first and third groups are the same in both messages. I’m still working on a possible decode for these messages

UPDATE

A couple of things.

Firstly, I noticed that if you collate the first six numbers of the above messages they could well be Lat/Long positions.

5310.27N (0)1032.02W
5316.40N (0)1039.31W

Putting that into Bing Maps you get:
http://binged.it/1CRBktS

It is known that the Bears flew approximately 10 to 15 miles off the coast of Ireland and this does tie in quite nicely with that. However, this doesn’t run with other messages received unfortunately. But, I’ll keep plugging away any further messages to see if there is a crack for some of them.

On to the second update.

I must have put my Excalibur on to record when I got back from work on the 19th but then forgot about it. Whilst deleting the backlog of recordings I noticed there was one I hadn’t listened to and quickly discovered I’d captured some further messages on this day too. Here’s the recording, with a transcription below (thanks to Ron for checking (and correcting) my Russian translation):

8131 – Bear Net

1502z BALANS calls 69341 and 69342

1503z [aircraft passes message, not heard]

1504z BALANS reads back
636 804 856 444 517 803

1505z BALANS reads back
809 698 525 048 517 326

1506z BALANS reads back
207 201 617 371 151 667 613

1510z BALANS reads back
891 804 707 677 517 211
[lots of error change messages with grp1 becoming 575, grp3 606]

1514z BALANS reads back
293 301 604 252 503 933 630
[lots of error change messages with grp2 becoming 201, grp4 952]

Bear Hunting

After this weeks flight of two Tu-95MSM “Bears” off the South West coast of the UK, I thought it would be a good time to release the article I produced for The Spectrum Monitor in October 2014. The article covers not only information on the Tu-95 and Tu-160 “Blackjack” but also on how to monitor these flights. There’s also some additional information that I’ve discovered I’d left out of the article plus some recordings from this weeks mission. tsmcover

With regards to the flight this week, it certainly caused quite a stir, making it onto the major national news channels. There was lots of speculation that they flew all the way along the English Channel causing lots of disruption to Civil flights into and out of the UK; also lots of rubbish spoken about what ATC can and can’t see. Though I can’t comment much, I will say I don’t believe the Bears flew all the way along the channel, instead I think they went no further than to the SW of the UK. From the playbacks I’ve seen on FR24, it looks like most of the disruption was caused by the tanking of the Typhoons by the A.330 – this area has been available for tanking for many years.

To answer the question about whether the aircraft can be seen on radar because they are not using transponders – well yes of course they can. It’s just there’s no associated height information, (which isn’t always there even if aircraft do use transponders)and of course it makes it harder to track. But, there are primary radar returns that’s for sure. Where I think people are getting confused is when the Bears are flying north/south across the Atlantic tracks in Shanwick’s airspace. Here they can not be seen as they are outside the range of radar, but by this time they would have been met up by Typhoons which gives all the relevant information about height etc over the radio . I hope this clears that up.

Anyway, on to the article

Bear Hunting

When I say Bear hunting, I’m not referring to tracking furry creatures around the countryside using sophisticated radio devices as aides, finally getting into the position for a kill or photograph. No, I’m referring to the monitoring of the Russian Air Force Strategic Bomber networks on HF.

Although in general the monitoring is referred to as “Bear hunting” and the frequencies monitored are in the widely used term, “Bear Net”, this is an incorrect name as it is not always Tupolev Tu-95 “Bears” that we are hearing.

The Russian Strategic Air Force is officially known as the Long-range Aviation Command and is made up of two heavy bomber divisions. The aircraft types used are Tupolev Tu-95MS “Bear H” and Tupolev Tu-160 “Blackjack” along with the non-Nuclear bomber, Tupolev Tu-22M3 “Backfire C” which is split into four divisions. As well as the bombers themselves, there’s also other types of aircraft used to help support the missions; these being Ilyushin IL-78M “Midas” air to air refuelling tankers, and Beriev A-50 or A-50U “Mainstay” AWACS – these types being based on Ilyushin IL-76 transport airframes.

A Quick Reaction Alert (QRA) Typhoon F2 from Number XI Squadron at RAF Coningsby is pictured escorting a Russian Bear-H aircraft over the North Atlantic Ocean. QRA procedures entail aircraft being held at continuous ground readiness, so that they can take off within minutes - without pre-warning - to provide air defence. (Photo courtesy of UK Ministry of Defence Crown Copyright Photo Service ©2008 Crown Copyright

A Quick Reaction Alert (QRA) Typhoon F2 from Number XI Squadron at RAF Coningsby is pictured escorting a Russian Bear-H aircraft over the North Atlantic Ocean.
QRA procedures entail aircraft being held at continuous ground readiness, so that they can take off within minutes – without pre-warning – to provide air defence. (Photo courtesy of UK Ministry of Defence Crown Copyright Photo Service ©2008 Crown Copyright

It is also presumed that other types are used in the missions, such as Ilyushin IL-76VKP and Ilyushin Il-86VKP “Maxdome” Command Posts (much like the role carried out by E-4Bs National Airborne Operations Centre aircraft used by the USAF) and even Ilyushin IL-38 “May” maritime patrol aircraft used by the Russian Navy (the USN P-3 equivalent). In general though, these types aren’t heard by those that monitor the frequencies regularly, especially the IL-76VKPs and IL-86VKPs as their statuses are not widely known, and their believed running costs make them almost too expensive to fly. The Russian Navy participation in exercises must take place, much like the combined exercises that the US Forces carry out – bombing missions/exercises supported by USN E-6Bs for instance.

There are other variants of the “Bears”, these being Tu-142MK’s and Tu-142MR’s (“Bear F/Bear J” respectively) but these are operated by the Russian Navy with Bear F’s used for Anti-Submarine Warfare, equipped with different radar fits and weapons systems designed specifically for Sub hunting; whilst Bear J’s are VLF communication airframes much like USN E-6B’s. There’s every possibility these do take part in some of the exercises we hear.

Getting back to the Air Force Bombers themselves, as previously mentioned above, there are two Strategic Divisions. These are the 6950th Guards Air Base at Engels Air Force base in the Saratov Oblast region of Russia; and the 6952nd Air Base at Ukrainka in the Amurskaya Oblast region. If you have Google Earth I’ve uploaded a kmz file showing their locations.

The bases are then divided into Regiments with the Engels base containing the 121st Guards regiment flying Tu-160s and the 184th regiment flying Tu-95MS’s. Ukrainka is made up of the 79th and 182nd regiments, both flying the Tu-95MS. Because of START, the numbers of each type flying are known, with 55 Tu-95MS’s and 11 Tu-160’s available to the Russian Air Force, but again, the full status of each airframe is somewhat hazy, even in the modern world of information technology available on the internet – there’s certainly many more photos of these types available to view online than there ever was available before the invention of the internet. The split of numbers between each regiment is again unknown, but Satellite images show up to 18 Tu-95’s at Ukrainka on the bombers apron.

With the breakup of the Soviet Union, aircraft of the Russian Air Force became popular targets for air show participants. The International Air Tattoo at Fairford, UK got the first bite in 1993 when Russia sent one Tu-95 and IL-78 refueller for the static display. In 1994 they did even better with a Russian Navy Tu-142M “Bear F” in the static and this Russian Air Force Tu-95MS “Bear H”, 23 black, in the flying display. © Tony Roper

With the breakup of the Soviet Union, aircraft of the Russian Air Force became popular targets for air show participants. The International Air Tattoo at Fairford, UK got the first bite in 1993 when Russia sent one Tu-95 and IL-78 refueller for the static display. In 1994 they did even better with a Russian Navy Tu-142M “Bear F” in the static and this Russian Air Force Tu-95MS “Bear H”, 23 black, in the flying display. © Tony Roper

Engels is almost certainly supported by IL-78 tankers either based at Engels itself, or from the Ryazan Air Force base which has the 203rd regiment based there. Ryazan is also a training and maintenance facility for the bombers. Ukrainka possibly has its own regiment of IL-78’s, but details on these are unknown at this time, it could even be another deployment of Ryazan tankers.

The Tu-95MS’s have a crew of seven, and can carry up to 16 Air Launched Cruise Missiles (ALCM), both Nuclear and conventional. Crew members comprise of:
Two pilots, radio operator, nav/defensive operator, flight engineer, bomber/nav and rear tail gunner. There’s also a spare seat for observers. The aircraft operate between 25,000ft and 38,000ft and can fly at speeds of 500kts (Mach 0.83) at the lower level. Unrefuelled they have a range of 3,455 miles, increasing to 4,480 miles with one refuel. They have however carried out multiple refuels extending this range even further. The most unique feature of the aircraft has to be the four Samara Kuznetsov NK-12MP turboprops each with eight-blade contra-rotating propellers – they make a very distinct sound

The aircraft themselves are split into three variants:
Tu-95MS-H6 and Tu-95MS-H16, referring to the number of cruise missiles the aircraft can carry. The main six missiles are on a rotary launcher inside the aircraft, with the H16 types having the ability to hold a further 10 missiles on pylons on the wings. For START purposes though, the H16’s are to be converted down to H6 standard only, if they haven’t been so already. The third variant is the Tu-95MSM which is an upgraded version designed to carry new type of ALCM.

The number of each variant is, as usual as its Russia, not fully known, but it is presumed most, if not all, are now of the Tu-95MSM designation, probably going from the H16 variant to this directly instead of downgrading to the H6 and then up again. The Tu-95MSM can be distinguished by the fact it is carrying eight of a new type of ALCM on pylons under the wings as these missiles are too long to fit in the internal weapons bay. Of course, they still have the option of using the internal rotary launcher and older ALCM’s if required.

The Tu-160’s have a crew of four comprising of two pilots, and one bomber/nav and a comms/nav operator. They have variable geometry wings that can be manually swept back as speed increases, the maximum speed being Mach 2.05 at 40,000ft. They normally cruise at about Mach 0.9 or 518kts at high altitude but they are fully capable of flying low level down to 250ft. The Tu-160 carries its weapons in two separate internal weapons bays, each with six missiles on rotary launchers

Weapons wise, both aircraft types are primarily intended to carry ALCM’s. A recently new ALCM has been designated the Kh-101/Kh-102, the latter having a nuclear warhead. The Kh-101 has a 400kg HE warhead designed to penetrate hardened shelters and has a range of around 5,000km at a speed of about 700kmh. They are reported to be accurate to 12 – 20m from this range. It is believed that an upgrade to the Tu-160s started in 2006 gave them the ability to use Kh-101/Kh-102’s.

An underside view of 23 black whilst it performed a flypast. The Kutnetsov NK-12MP turboprops with the eight-blade contra-rotating propellers are clearly discernible here. The airframes themselves have hardly changed since this was taken in 1994. © Tony Roper

An underside view of 23 black whilst it performed a flypast. The Kutnetsov NK-12MP turboprops with the eight-blade contra-rotating propellers are clearly discernible here. The airframes themselves have hardly changed since this was taken in 1994. © Tony Roper

By far the greatest number of ALCMs available for both aircraft types are Kh-55/Kh-555 (NATO AS-15 “Kent”). There are a few sub types available but for simplicity, the Kh-55 (AS-15A and B) types have nuclear warheads, whilst the Kh-555 (AS-15C) is a conventional weapon with a 410kg HE warhead. Ranges vary from 2,000km to 3,500km. There are over 700 Kh-55 ALCM’s still in existence according to reports. The long term plan was reportedly to be 500 nuclear armed ALCM’s in the inventory made up from both Kh-55 “Kent B” and Kh-102 types.

Monitoring the “Bears”

In all references to “Bears” it could actually mean either the Tu-95s or Tu-160s but it’s just easier to generalise the term to save space. More often than not they are Tu-95s though as there’s a greater number of these aircraft in the fleet.

The Bear networks use both CW and USB for communication; CW is Duplex with ground stations on one frequency and the aircraft on another; whilst in USB mode the networks are simplex. The frequencies are contained in the table provided, but as you’ll see there’s still one missing; in fact it was only recently that I discovered the summer air frequency used – until this time it was not known by the many that monitor the Bears (well no-one else had published it anyway). No doubt there are more frequencies used as, as you can see, there are secondary ground frequencies in other seasons.

The Russian Military in general use a seasonal system for selecting their frequencies and for the Bear net these haven’t changed over the last few years.

**New information**

I also have VHF/UHF Air to Air frequencies that the Bears have used in the past that I forgot to put in the article:
124.000
128.500
136.250
138.550
284.650
289.000
358.125
************

As well as HF, they also use VHF/UHF for normal transmissions to ATC, Air to Air etc. These HF networks are solely for communicating with presumably HQ Moscow and other strategic agencies, their homebase for instance. It’s even possibly transmissions to radar sites or an equivalent to the Mainsail or “Skymaster” calls made by USAF bombers.

Usually the first sign that the Bears are up is the activation of Marker Beacons on the CW networks. Every 20 minutes, lasting for two minutes, a single letter will be repeated by CW. It is always on the H+00, H+20 and H+40 and normally hand sent. The marker most commonly heard is “W” and this is almost certainly Moscow and the Strategic (or Long-Range Aviation) headquarters. Another is “G” which is believed to be Ukrainka. Engels probably has a marker but it is unknown, but various other markers noted include “Q”, “R” and “Z”.

This photo of Tu-95 Bear-A “12 black” was taken in 1985 by my friend who I served with in the RAF, Dave Hedges. Not much has changed to the aircraft externally since then. He had blagged a trip on a VC-10 that was planned to do a routine Air to Air refuel with Buccaneer aircraft, when the aircraft was suddenly re-tasked mid refuel. It transpired the VC-10 was to refuel a F-4 Phantom that had been scrambled to intercept two Bears that were heading towards the UK through the Faroes-Iceland gap. Dutch fighters also escorting the Bears had to RTB due to lack of fuel so the VC-10 joined the Phantom in stewarding them away from the UK. One thing he still remembers is that “the noise and vibration from the Kuznetsov engines with their contra-rotating propellers was astonishing”. © Dave Hedges

This photo of Tu-95 Bear-A “12 black” was taken by my friend who I served with in the RAF, Dave Hedges,in1985. Not much has changed to the aircraft externally since then. He had blagged a trip on a VC-10 that was planned to do a routine Air to Air refuel with Buccaneer aircraft, when the aircraft was suddenly re-tasked mid refuel. It transpired the VC-10 was to refuel a F-4 Phantom that had been scrambled to intercept two Bears that were heading towards the UK through the Faroes-Iceland gap. Dutch fighters also escorting the Bears had to RTB due to lack of fuel so the VC-10 joined the Phantom in stewarding them away from the UK. One thing he still remembers is that “the noise and vibration from the Kuznetsov engines with their contra-rotating propellers was astonishing”. © Dave Hedges

The Naval Bears also use a Marker system, with Moscow using “C” and Arkhangelsk/Severomorsk using “S” , but it’s just as possible they also use the very same network here. Without visual identification of the aircraft you just don’t know who you’re listening too, but more on that later.

The purpose of the markers is so that the aircrew can check their radio equipment, and also confirm they are able to receive the appropriate unit they need to communicate with. If there are two markers on the go at the same time, as recently with both G and W, the one that isn’t Moscow seems to start about a minute earlier so that there’s a slight overlap. On USB there are no markers. I always wonder which is the primary method of communication here, as CW from the ground certainly has a better range, well for me anyway. Moscow “W” is normally very loud, though as usual propagation plays its part sometimes.

The Bears normally start the communications with Moscow, and I would say it’s likely to be an airborne or status message. But there is no way of telling as the messages are coded. Be it using CW or USB the aircraft always send messages containing groups of three numbers. Ordinarily there doesn’t appear to be a pattern to the numbers as such but they obviously have a meaning, examples of CW messages are:

1244z KFE4 DE KL3U QTC = 728 988 046 927 579 274 780 545 419 069 009
1321z KL3U = 871 988 990 084 158 304 182 397

These messages are from an excursion to the edge of UK airspace on the 19th August this year. Interestingly, I also picked them up on the 20th August 2013, also the third Tuesday of August – coincidence? To breakdown the message above, KFE4 is the ground station, KL3U is the Bear flight. There’s a possibility that the ground station callsign “travels” along with the flight, with a different ground station taking over the callsign to give complete radio coverage. This is just another theory though.

Now we all have our own ideas about the numbers and to be honest I just don’t know the true answer as to what they could possibly mean. I would expect them to be position or progress reports, status reports even. Interestingly, in this mission there were multiple messages starting with 728 or 871, and every time a message began with these numbers the second number group matched:

1153z KFE4 DE KL3U QTC = 728 577 046 025 084 920 423 545 091 804 895
1211z KFE4 DE KL3U QTC = 871 577 990 396 743 406 287 753

You may also notice that comparing the message examples, the third group is the same with regards to the first group; 728 is 046, 871 is 990. This repeats throughout the messages of this mission.

To confuse things slightly though, there is a third first group involved with KL3U, this is 558:
1301z KFE4 DE KL3U QTC = 558 130 422 295 396 246

558 messages never matched any of the second group numbers to 728 and 871, and the third group is never the same.

The messages starting 558 are more in line with the other missions I’ve logged which look totally random. There also messages that are short from an aircraft which are then an hour later at the beginning of a longer message from the ground station, such as these sent in March this year:
1612z P9DL = 710 282 073 633
1728z TRL5 = 710 282 073 633 276 040 795 197 136 802 777 539 643 709

It wasn’t until writing this article that I noticed there’s actually a forth first group in the recent mission, 732, which matches the same format as 558. So, as you can see, there’s random and there’s fixed message types. I do enjoy trying to crack these codes, something I managed to achieve in January when I analysed messages from IL-76 transporters ferrying equipment to Syria as part of the Chemical weapons removal. This can be read in my blog from that time.

Part of me thinks that each first group is a separate aircraft within the formation but there are a couple of things that cancel that theory out. Firstly, this pattern doesn’t follow in previous missions and secondly, the keying was almost certainly done by the same person due to the “fingerprint” of the CW. However, as with most formation flights of any Air Force, it could well be that only one aircraft is sending messages for all aircraft in the formation, the lead aircraft for example. The Russian Navy does this when there is a group of ships travelling together, with quite often one ship sending messages for all. It is generally believed that the air callsigns are individual aircraft as there have definitely been other missions were more than one callsign has been in contact with the ground – but were these in fact other airborne assets and not the bomber flight?

The aircraft callsigns seem to be tactical and change every time whilst the ground callsigns appear to be fixed with the same ones being used each season, examples being:
TRL5 – spring
TV6P, IZ2J and KFE4 – summer
4ASU, QZ6Y and PUO7 – autumn
IWV4 – winter

It is always a better monitoring experience if you can pick up both CW Air and Ground so that you can get both sides of the “conversation”, but this isn’t always the case, with just the ground audible. The transmitters on the aircraft are not big, and they are not powerful so it is hard to pick them up. Of course, if they happen to head over towards the UK then they do get very clear indeed, as happened recently when at least two Bears flew close to the Shetland Islands off the NE coast of Scotland.

Another side view of 23 black as it taxies in. The rear tail gun is clearly visible here and if compared to Dave’s picture from the 80’s you’ll see a slight change. The glass observation bubbles under the tailplane which were used by the tail gunner have been removed, as has the second gun positioned on the underneath of the aircraft just before the tail (slightly harder to see in Dave’s picture). The gun itself is also a different model. © Tony Roper

Another side view of 23 black as it taxies in. The rear tail gun is clearly visible here and if compared to Dave’s picture from the 80’s you’ll see a slight change. The glass observation bubbles under the tailplane which were used by the tail gunner have been removed, as has the second gun positioned on the underneath of the aircraft just before the tail (slightly harder to see in Dave’s picture). The gun itself is also a different model. © Tony Roper

Hearing both sides of the R/T isn’t a problem on USB as it’s a simplex network, but range of aircraft from the reception point and propagation will of course play a part in this. Your knowledge of the Russian language though is going to be main hindrance in any monitoring. Usually the ground station is very much stronger, much like the CW network.

Russian is hard enough as it is, but when you’re listening in on HF to something where the crew themselves have to wear headsets with additional noise defence fitted to the earpieces, you can just imagine what it sounds like. To put it another way, you can normally tell you are listening to a Tu-95 and not a Tu-160 because you can actually hear the turbine engines in the background! And the crew are normally shouting down the mic. To add to the difficulty of working out the messages there’s the way the numbers are said. Some say them in singles – Dva Vosem Dva (282); but then other crew members will say them as long numbers, two hundred and eighty two for example which in Russian is “dvesti vosem’desyat dva”. Luckily, you’ll normally get a second chance at the numbers as the ground controllers will read them back, often in both methods as described. I know numbers in Russian, and I really struggle, especially in the non-singular method. A recording is normally necessary to get it right – if possible.

As I’ve already stated, the message formats are the same, three figure groups. But there is a difference in callsigns. For starters the aircraft use a different call to the CW one, comprising of five numbers, 50271 for example. These numbers are logged differently by some people, 50-271 for the previous example. This is because of the way the callsigns are sent: “Fifty, two hundred and seventy one”. But I think this is wrong, and there’s possible photographic evidence that points towards the numbers being a five figure group. There’s a link to the photo evidence at the end of this report.

The ground stations also have voice callsigns as opposed to the four digit call in CW. In a way this is understandable as some of the callsigns are long and would be hard to do quickly in CW. Again though, the ground callsigns are fixed and never change, they’re not even seasonally split as far we can tell. Callsigns heard include:
BALANS
NABOR
KATOLIK
ADRIS – new callsign for the recent flight
SHPORA – believed to be Rostov-na-Donu though not proven
MEDYANKA
OCHITSKA

The location of the other callsigns is unknown, but BALANS and NABOR are called the most and it seems likely one of them is Moscow or Long Range HQ.

Now here’s the strange thing. The actual message format is the same as I’ve already said, and yet when CW and USB have been sent at the same time, no doubt from the same aircraft formation, the actual message is different. As an example here’s two messages sent at exactly the same time, 0212z on the 20th August 2013:
CW: TV6P = 161 179 985 027 614 591 089 C = (this is a read back from the ground station TV6P)
USB: 30977 calls Medyanka – 527 268 987 627 805 893 206 591 093

Except for the penultimate group (591), no other number is the same, but there are similarities. At the end of the day though, these messages are being sent by Strategic Nuclear bombers, they are probably exactly what would be sent should the unthinkable happen and the aircraft are dispatched for real. The messages are not supposed to be decoded, and if I was able to I’d be a very rich man thanks to NATO. Liken them to the equally unbreakable EAM messages sent by the HF-GCS network if you like.

Of note in USB mode is that there are a lot of relay messages from one aircraft to another, something that I haven’t found in CW mode. This is probably down to CW having a better chance of getting through noise and propagation than voice transmissions. Sometimes, though, CW messages are sent blind.

More often than not the aircraft actually head east these days, especially those from Ukrainka. In the Cold War this wasn’t the case and the Bears made regular trips to Europe skirting around the northern parts, not entering any sovereign airspace, and even heading into the North Atlantic region. If they did this, it would cause all sorts of trouble as they don’t declare themselves to Shanwick Oceanic and normally just cut south across all the Oceanic tracks. The only method of knowing where they are here is via long range radar (which as you can imagine aren’t pointing out over the Atlantic as there’s not much threat to the UK from that direction) or via an “escort” of RAF fighter aircraft. These flights to the Atlantic are increasing again, sometimes going as far south as Portugal and beyond.

Most nations have a QRA (Quick Reaction/Alert) capability and in Northern Europe they used to get launched regularly but this died down when the Soviet Union fell. Russia had a lack of funds for a very long time and its military fell by the wayside; until Putin’s recent reprisal of it all. In the last few years, Bear missions have increased from practically none a year to two a month, especially recently. Sometimes it’s two a week to Europe or Pacific regions, or maybe one to Europe and one to the Pacific at the same time. Either way, they are getting more and more frequent again.

QRA aircraft will launch from the various countries along the route and intercept the Bears in “free” airspace, take some pictures, note down the aircraft identities (reporting this back directly to the Air Defence Controllers), wave and generally ensure the aircraft do not enter sovereign airspace. If the Bears continue skirting the edges of various other countries, then the current escorting QRA will hand over to the next country along the way. It takes a lot of resources to carry out the QRA task, with fighter crews being on immediate standby at their bases, 24/7, along with at least one air-refuelling tanker required to sustain the flights here in the UK. Should it be a long task, another flight of fighters will get airborne to take over whilst the first pair get a refuel. There is no messing around here though, the fighters that go up to meet the Bears are fully armed and make sure the Russian crews are aware of this fact by showing them.

Obviously, the intercepts are also monitored here in the UK and Europe but I’m not at liberty to say frequencies used due to the very nature of the missions. One thing this monitoring does provide though is the identity of the Russian aircraft, because as I mentioned earlier, the intercept aircraft report back the type and tail numbers of the Bears.

Of note from a recent intercept by RAF fighters, at the time the lead Typhoon reported flying in formation with the lead Bear, a message was sent on CW. Was this a message being sent back home that they had met up with the UK Air Defence?

Finally, it is also worth noting that CW isn’t always received even though there’s plenty of traffic on USB. The markers will still be being sent every 20 minutes, but there’ll be no actual traffic. I’ve not known it to be the other way round with CW only and no USB.

Two approximate routes routinely taken by “Bear” flights towards the UK. The route to the west of the country causes no end of trouble as the route cuts south, and then north again, straight through the Atlantic Oceanic tracks which is a non-radar environment. They also cut south between the UK and Norway, down towards Dutch airspace Map features courtesy of SkyVector.com

Two approximate routes routinely taken by “Bear” flights towards the UK. The route to the west of the country causes no end of trouble as the route cuts south, and then north again, straight through the Atlantic Oceanic tracks which is a non-radar environment. They also cut south between the UK and Norway, down towards Dutch airspace
Map features courtesy of SkyVector.com

Recordings from the flights on the 28th January 2015

NOTE – These recordings are copyrighted to me. It has been noticed that other recordings have ended up on YouTube, uploaded by a third party. Should this happen with my recordings, further action will be taken

8131kHz 1058z – Callsigns believed to be 72181 and 72182 calling BALANS, ADRIS, KATOLIK and GEOLOG. Aircraft types are still unknown at this time but possibly the IL-78 refuellers. They call each other and chat about not getting through to any station.

8131kHz 1130z – Callsign 72186 makes calls initially with no luck, then calls 72182 and asks them to try the ground stations, which they do, also with no joy

8131kHz 1224z – Callsign 72181 calls initially followed by 72182 calling 72181. After a brief conversation 72182 tries BALANS getting through (very faint on this recording).72181 then tries BALANS again and gets through with following coded message 949 867 069 473 250 197 518. BALANS doesn’t get the message and 72181 tries two more times but BALANS doesn’t get the message clearly. Note – to cut down the length of the recording the faint BALANS transmissions are cut out