Russian OTHR 29B6 Konteyner analysis

I recently completed an article for Jane’s Intelligence Review magazine on the activation in December 2019 of the Russian Over-the-Horizon Radar system (OTHR) 29B6 Konteyner near Kovylkino in Mordovia.

Like all of the articles I write for them, many parts and imagery are removed due to space constraints in the magazine – for example, see my previous blog on the Murmansk-BN EW system where I have been able to add a substantial amount of extras that couldn’t be published. So, whilst I can’t publish here the actual article on Konteyner, I can show some of the extras that were removed.

How OTHR works

I could go into how OTHR works, but it’s been covered elsewhere in extreme detail. One of the best places for a basic overview is Wikipedia, where the image below is taken from.

How a skywave OTH radar works: A powerful shortwave signal from a large transmitting antenna (left) reaches a target beyond the horizon by reflecting off the ionosphere, and the echo signal from the target (right) returns to the receiving antenna by the same route.
Image by Charly Whisky. More information on OTHRs is available on Wikipedia

Konteyner specifics

Officially designated Object 5452, construction work of the original transmitter and receiver sites commenced in 2000, taking two years to complete.

The Konteyner receiver site, with one array, was situated 6 km to the South West of Kovylkino, whilst the transmitter site – also with one array – was located 5 km north of Gorodets in Nizhny Novgorod Oblast. The system covered airspace to the west of Russia with a central bearing of 275 degrees, arcing out in a fan, with an approximate range of 3000 km (depending on radar pulse rates – covered later). Due to Ionospheric bounce a null area is created that is approximately 900 km in depth from the transmitter site. Here, nothing would be picked up by the Konteyner systems, and other OTHRs such as Resonans-N and standard Air Defence radar systems are used to fill in these gaps.

Gorodets transmitter site on 25/10/16

However, the Gorodets site is no longer in use, despite many blogs and expert publications saying otherwise – Jane’s included (until my article). Located at 56°41’34.1″N 43°29’11.3″E, this site has been dismantled since at least 6/2/18 according to Google earth imagery. All the concrete footings remain, but the antenna array is no longer there.

Gorodets transmitter site as it is now.

The receiver site at Kovylkino is still there, and from June 2016 construction had begun on two other receiver arrays, creating a triangle. Array one continued to cover a 275-degree bearing whilst the new arrays covered 155 degrees and 215 degrees.

Kovylkino receiver site with the original first array on the West.

Each receiving array contains 144 masts, all approximately 34 metres in height. They are split into three sections where the two outer ones – consisting of one group of 23 masts and the other of 24 – is between 300 and 310 metres wide. Each antenna here has 14 metres of spacing between them. The inner section contains the remaining 97 masts with 7 metres between each. The total length of the array is over 1.3 km.

Matching these receiver arrays was a new transmitter site just 15km to the South East. Imagery on Google Earth from 29/6/16 shows that there are three arrays being constructed in a Y pattern, each with the same three bearings as the receiver site. By 18/8/17 it is clear that the southern array originally thought to be covering 275 degrees instead covers 095 degrees. A second array is visible being built back to back with the 095 array to cover 275 degrees. Moreover, this meant that the original 275 degree receiver array was also being used by both transmitters.

Kovylkino transmitter site with many areas still under construction

The closeness of the transmitter site to the receiver site for long range OTHR systems is a strange one. In general they are a good 100 kilometers apart – the Australian JORN system is good example of this. Moreover, putting all the arrays so close to each other – at both sites – opens the whole system up to being destroyed, or put out of action, by just one air strike!

Each transmitter array has up to 11 generator buildings located to the rear of the antennas. Four of these buildings are also located at the original 095/275 degree receiver array. Google Earth imagery from 24/2/18 shows both sites still under construction. From 1st December 2018, combat testing of Konteyner had started and satellite imagery shows all four arrays to have generators in place by November 2018.

Generator buildings situated to the rear of the 095/275 receiver array. These appear to be the same as the 11 situated at each transmitter array.

The transmitter site consists of 44 masts in a line, 500 metres in length. The masts themselves are of differing height with the 22 tallest ones approximately 34 metres tall. The remaining 22 are approximately 25 metres in height. The masts are split up into groups of 11 of each kind.

095 bearing transmitter array at the new Kolvykino site, with the footings in place for the 275 degree array

With ranges of over 3000 km for each transmitter – effectively there are four OTHRs in use – the number of radar tracks that are captured will be in their thousands, many of which are civilian. Moreover, static features such as large buildings are also captured, showing as background noise or unknown tracks.

There are two methods used to eliminate the background noise. Firstly, during testing many of these will show through time and are deemed static and can be filtered out. Secondly, this type of OTHR – known as OTH-B or Over-the-Horizon Radar (Backscatter) – employ a Doppler effect to distinguish between static and moving targets requiring fast computers with high processing power. Doppler uses frequency shift created by moving objects to measure their velocity and so can track targets travelling at any speed, even down to 1 or 2 knots for ship traffic. Whilst older Russian OTHRs – and likely Konteyner in its early days – would have struggled in this area, modern computers can cope with the Doppler methodologies used. Anything deemed not moving by the Doppler effect can be eliminated as a potential threat or track, and are also filtered out.

To further eliminate any overloading caused by unwanted tracks, areas of interest are set up within the radar coverage which are then further split into smaller areas or “search boxes” where radar returns outside of these are ignored. These search boxes can be moved by operators as required.

The radar system is unable to determine any height parameters therefore each track is just a target at an approximate GPS position, and could be on the ground or anywhere up to 100 km in altitude! In other words, it is the equivalent to a primary track in the standard radar world. Moreover, each track could be displayed at an operators console with a radar return that depicts the target to be kilometres in size! This further complicates determining the actual location of the track.

Finally, OTHR technology does have another drawback that is much harder to filter out. Just by looking at the images below you can see that a substantial number of aircraft tracks are still captured within the search boxes, particularly in busy airspace such as around airports and heavily used civil ATC airway systems.

Here, a screengrab of a video release from 1st December 2019 when Konteyner went live shows the four areas covered by the four OTHRs, which then have search boxes at areas of interest.
A close up from the video, here showing Lt. General Andrei Demin, Commanding Officer of the 1st Air Defence Division, provides a better view of the search boxes from the 215 degree array. This antenna array obviously set up to cover the Black Sea region and Mediterranean Sea. The search boxes appear to only show air traffic, though Konteyner has the potential to pick up shipping too, and it clearly shows the busy airspace around Istanbul. It is highly likely that this area was selected for the search boxes to highlight the OTHRs potential at picking up traffic, but also to NOT show what it can pick up in the Med.

One thing that OTHR doesn’t have is an Identification Friend or Foe (IFF) capability. Without IFF, this then makes it even harder to determine who is friendly, who is just an airliner or who is a potential threat.

Each of these tracks needs to individually interrogated and the routes plotted to eliminate the potential threat. For instance, all traffic into Istanbul pictured above tends to fly the same routes in and out of the airport there, so whilst the track can’t be fully removed from the display (or filtered out) it can be “ignored”. If IFF was an OTHR capability – and this is the same for other OTHR systems, not just Konteyner – then known transponder codes allocated to airports/airway systems etc. could then be filtered out. This happens in everyday ATC operations where certain transponder codes can be filtered out to remove clutter at the press of a button.

This then can make OTHR monitoring reasonably labour intensive for operators covering areas of high aviation activity despite modern computer technology being there to help.

OTHR range capabilities are controlled by the pulse rate of the signal sent by the transmitter site. In general, Konteyner operates at 50 pulses per second (pps) giving a range of approximately 3000 km. This pulse rate is also used by many other OTHRs such as the Australian JORN system (Jindalee Operational Radar Network).

Another screenshot taken from the media video at the operational handover of Konteyner showing the standard range of approximately 3000 km from Kovylkino, Mordovia.

OTHR has a potential advantage over standard radar systems in that it can track stealth aircraft such as USAF B-2s and F-35s. JORN reportedly tracked a USAF F-117 Stealth in the 1990’s that was on a round the world flight proving it couldn’t be picked up by radar! The Royal Australian Air Force (RAAF) were so confident they’d tracked it, they gave the details of positions the F-117 took to the USAF. I couldn’t find any confirmation on this from USAF documentation but it is possible.

By using the Ionospheric HF bounce, the radar is effectively looking down on top of the aircraft rather than at a very low angled Microwave radar signal head on to the target. This creates a larger return and using Doppler frequency shift is able to establish whether the track is moving, and at what speed. An early heads-up of a potential stealth bomber attack on Russia gives them the advantage of knowing where to send intercept aircraft and set up other defence methods. In the case of an ICBM strike, extra vital minutes warning can be provided. But, as previously mentioned, the position isn’t 100% accurate and can only provide an approximate location of the target – the system can not be used for any weapons fire control.

Konteyner signal received using an AirSpy HF+ Discovery SDR in high resolution with SDR# software
Close up of same signal. Due to the high resolution, the individual pulse sweeps can not be seen and are instead show as a blurred pattern.

As previously mentioned, in general Konteyner uses a 50 pps radar signal sent as frequency modulation on pulse (FMOP) using an approximate 12 to 14 kHz of bandwidth. However, through analysis of the Konteyner signals other pps rates of 25 and 100 have been recorded giving ranges up to 6000 km and 1000 km respectively. The manufacturer of Konteyner, NPK NIIDAR (Scientific and Research Institute for Long-Distance Radio Communications), has confirmed the 3000 km range, along with an altitude coverage of 100 km.

When analysing the signal in Procitec’s go2MONITOR software, the pulse sweeps can be seen much clearer, though still at this resolution there is a blurring to the sweeps. The software has automatically ascertained the sweep rate of 40 Hz – or 40 pps – at a bandwidth of around 12 kHz. A 40 pps sweep for Konteyner provides a radar coverage range exceeding the stated 3000 km – up to approximately 4000 km.

One find in my analysis of Konteyner signals was quite interesting.

Quite often when analysing OTHR signals closely, you can see weak Back-scatter return signals between the main pulses. These weak signals travel in the same radar sweep direction as the transmitted ones in either a down-sweep mode from a high frequency to a low one, or in an up-sweep mode from to low to high.

In the image below though you can see another, weaker, radar pulse emanating from the point the first down-sweep pulse ends, travelling up in frequency range and creating a V. If you look closely you can also see a very weak back-scatter signal from both.

My conclusion from this is that the up-sweep pulse is from the 095 degree Konteyner transmitter array, whilst the stronger down-sweep one is from the 275 degree array – the stronger signal is in theory pointing at my antenna in the UK and hence would be emanating from the 275 degree array.

The fact that this signal comes from the 095/275 arrays is a guess of course but I think I’m right. I am also going to guess that the complete radar pulse for the 095/275 transmitters starts at one end of one array, travelling along the 44 masts. When this pulse ends the other array starts in the opposite direction. Moreover, with this method there should be zero interference between the two arrays as they wont be transmitting at the same time.

In the image above, taken from from a screen grab of Procitec’s go2DECODE, you can see that each pulse is every 25 ms, therefore confirming a rate of 40 pps – the software also determines this automatically as shown in the table to the right. Also of note is the analysed signal in the frequency window (Hz) at the bottom. Here you can clearly see the V created by the two pulses.

When we look at the Time display window in go2DECODE (shown below) we can see that I’ve measured the total length of both pulses to be around 6.5 ms. But on closer inspection I think I’ve cut that short a little and it should be 8 ms. This would mean each pulse lasts 4 ms and ties in nicely with the 25 ms per pulse gap as there’s a 21 ms spacing between the end and start of each individual pulse.

I also wonder, that with a gap of 17 ms between the end of the second pulse and the beginning of the first one again, in theory there’s enough of a gap to fit two more 4 ms pulses between these from the the two remaining Konteyner arrays transmitting at 40 pps. Even at a higher 50 pps rate, the 12 ms gap is enough to allow the two remaining pulses to take place with a 4 ms buffer.

This then means that all four Konteyner transmitter arrays can be operational at the same time without causing any potential interference to each other, whether they use the same frequency or different ones. In this case, I’ve been lucky to capture two of the arrays using the same frequency – well, I think I have 🙂

Nevertheless, monitoring the Konteyner signals should bring some further interesting finds, especially if they are using the same frequency occasionally for different surveillance areas. Moreover, it would also be interesting to find all the various pps rates so that system ranges can be established.

Whilst for many, OTHR signals are a pain, wiping out other signals, they still have a lot to give when it comes to SIGINT gathering.

And it may not end at just the one Konteyner system. On the 1st December 2019 it was also announced that a further system would be activated to cover the Arctic region. At the moment, any potential sites have not been mentioned or found, but a likely site would be near Severodvinsk in the Arkhangelsk Oblast, or near Severomorsk in the Murmansk Oblast. Both of these are close to the 1st Air Defence Division headquarters located in Murmansk. My only negative thoughts on this would be that these sites are too close to areas of interest because of the ionosphere skip created, and also probably too far north – ionospheric bounce is not so good towards the poles.

As the original Konteyner transmitter site seems to be being maintained still, be it without any antennas, it also has the interesting aspect of being around 900 km south of the White Sea and areas of coverage needed – perfect for the ionospheric skip. Could this site be changed in aspect so that a transmitter array points to the north to cover the White Sea, Barents Sea and the northern Island? There’s certainly enough room to do this at the Gorodets site.

There has also been mention of another Konteyner site already in construction in the far east. At this time nothing has been found of any construction site that looks to be a Konteyner OTHR and I have my doubts about this. It was first muted in 2010, then again in 2018, and I would have expected something to be there by now.

I highly suspect that this plan has been abandoned, and the 095 degree OTHR of the Kovylkino Konteyner site has taken over the far east coverage.

1 thought on “Russian OTHR 29B6 Konteyner analysis

  1. Pingback: Konteyner Follow-up | planesandstuff

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.