Full analysis of the sinking of Liman

With it being a month this weekend since the Russian navy Moma-class AGI Liman was hit by another ship resulting in its sinking in the Black Sea, I thought I’d publish my full analysis on the incident.

Originally this work was created for Jane’s Intelligence Review, but due to space limitations in the magazine, it was condensed into a half page report. This blog includes all the imagery and extra text that was left out, but also some further analysis that I’ve been able to do in the mean-time. Because of this, I must state that the analysis published here has nothing to do with any IHS publication, and that any views (unless otherwise stated) are all my own.

Liman, taken in November 2015 by Yörük Işık

A brief account of what happened

On the morning of Thursday 27th April 2017, at approximately 0830z, reports on social network starting coming in that Moma-class Intelligence gathering ship Liman of the Russian navy had collided with a livestock ship in the Black Sea at a position approximately 30nm to the North of the entrance of the Bosporus Strait. There was thick fog in the area at the time of the incident.

Early information from the Russian Defence Ministry stated that Liman had collided with a ship named Ashot-7 but a search through ship registries quickly showed that this ship did not exist. From AIS analysis however, a ship identified as Youzar Sif.H had departed the port of Midia in Romania for Aqaba in Jordon at approximately 1645z on the 26th April heading for the entrance of the Bosporus Strait. The ship was carrying livestock, reportedly sheep. From the AIS data it was noted that Youzar Sif.H was cruising at a speed of 11 knots for most of the journey across the Black Sea until at 0845z on the 27th April the ship came to a sudden stop. It is here that the two ships collided.

Liman was operating without any form of AIS at the time, despite being in thick fog – it is likely not to have had the system installed. To this date, the Russian Defence Ministry, has not reported what tasks Liman was carrying out but it is known that it wasn’t due to pass through the Bosporus Strait.

The collision holed Liman below the waterline which led the ship to starting to sink. Though most of the [up to] 85 crew members evacuated, it is known that some remained on board to, in the words of the Russian Defence Ministry, [remove] all special equipment, documentation, weapons and ammunition. [The] ship’s crew were evacuated to life-saving appliances, and then safely transported to the base of the Black Sea Fleet in the Crimea.

Almost immediately following the reports of the incident, new Project 22870 Ocean-going Rescue Tug SB-739 was sent to the scene from the Black sea navy base in Sevastopol. SB-739 does carry AIS equipment and analysis of this shows that the ship departed at approximately 1030z on the 27th, arriving 20 hours later. SB-739 carries the latest ROV to be deployed to the Russian navy, the Marlin-350 made by Tetis-Pro. This ROV can operate up to depths of 350 metres, with charts of the incident area showing depths of between 50 and 100 metres.

It was noted at the time of the incident that a Russian flagged Civilian Survey ship Хезер Си (Heather Sea) had commenced operations approximately 20nm to the NW of the collision site. The final position where Liman supposedly sank has been reported on social media at 41.50N 28.95E, the area where Heather Sea was operating, but this is a long way for the Liman to have drifted prior to sinking. A good friend of mine intercepted a navigational warning sent out by the Turkish authorities on Navigational Telex (NAVTEX) stating the final sinking position as 41.30 24 N 028.57E and it is here that SB-739 positioned itself on arrival.

Youzar Sif.H rescued some of the Liman crew members, and it is believed that another Russian flagged cargo ship, Ulus Star, also took part in rescuing crew as AIS analysis shows the ship deviating from its course to the incident area, before continuing on through the Bosporus later on in the day. At one stage it rendezvoused with both Youzar Sif.H and a Turkish government tug, Kutarma-3, which was one of the Turkish SAR ships sent to the area.

AIS data combined into one image
1 – Youzar Sif.H cruising at 11kts at 0813 UTC 27 Apr 2017
2 – Youzar Sif.H technical stop/malfunction at 1854z having started to return to Midia
3 – SB-123 arrives at the incident site at 0615 UTC 28 Apr 2017
4 – Heather Sea stays on task throughout incident

Youzar Sif.H returned to Midia, whilst SB-739 remained on site. Another Russian research vessel, Project 11982 AGOR Seliger, broadcasting as a “Law Enforcement” vessel on AIS, joined SB-739 at the area where Liman sank on the 1st of May . Seliger carries a submersible vehicle which was used to examine the wreck of Liman. Further reports of two other ships arriving around the 10/11th of May were given. These were KIL-158, a Kashtan-class buoy tender that has lifting equipment capable to take weights of up to 130 tonnes and Epron, a Prut-class rescue tug which is used for diver operations.

With the arrival of KIL-158 and Epron, it is highly likely that the Russian reports that all equipment was evacuated before the sinking were false and that these ships were here to recover those items still left on board. In particular, recent images of Liman show it with a large SATCOM dome towards the stern. This will almost certainly have contained a dish used for a SATCOM system given a NATO codename “Punch Bowl”. This communicates with store and dump type satellites such as Strela, Raduga and Rodnik. Information is collated and stored within the system and transmitted when a satellite passes within range. The satellite stores the information and “dumps” the data once in range of an appropriate ground-station. It would not have been possible to remove this system from the deck quickly and it is likely it went down with the ship.

With the final result of this incident being a lost ship, luckily with no loss of life , it highlights why the requirement of AIS on all shipping, even military, should be mandatory, especially in areas of high intensity traffic such as the Bosporus Strait.

What happened next….

There quickly followed a media frenzy of accusations and denials.

Russian media accused the Turkish government of sending divers to the wreck within an hour of Liman sinking and stealing all the equipment left on board – this is despite publishing on the same day how all the equipment had been recovered by the heroic crew of Liman. It is totally unlikely that the Turks had managed such a feat. Apart from the fact that it is dangerous to be diving on a wreck that soon after it has sunk, as shown by the ships needed by the Russians to do the actual task of recovery, the Turks sent nothing of the sort to the area. In fact, they did a great job of assisting a ship in distress.

Close-up of Youzar Sif.H’s track following the collision. The grey ship is Kutarma-3, which stayed to assist the sinking Liman.

The Russians then accused the crew of Youzar Sif.H of operating their ship dangerously in conditions that were unsuitable for a speed of 11 knots, including suggestions that the crew were drunk. Of course, they said nothing of the fact that their own ship was operating clandestinely (be it in open sea and legally) without the safety net of AIS equipment. The Russian navy is currently trying to sue the operating company of Youzar Sif.H for the loss of Liman.

Also of note was an interesting statement by Captain Vladimir Tryapichnikov, the head of naval shipbuilding, at the recent launch of the second Project 18280 AGI Ivan Khurs on May 16th. He alluded to the fact that Ivan Khurs would replace Liman in the Black Sea fleet, and that there would be a further two ships of the class built. His actual words were:
Let’s give the fleet the second ship, and then talk about the next two. Defence plans indicate that the Navy will receive them before 2025

This is almost likely to be false – on both counts. There has never been four ships planned and the replacement of Liman with Ivan Khurs would be a ridiculous waste of money. The Russian navy has a terrible funding problem, with not even enough projected funds available to build new Destroyers they have planned. They are also desperate for a new Aircraft carrier, but funding makes this highly unlikely; and they are seemingly already having problems funding the refit of Kuznetsov(orel)-class Aircraft Carrier Admiral Kuznetsov which is about to begin. With this in mind, and other on-going funding problems with frontline ships and submarines, it is very unlikely they will put aside any cash for two more AGI’s.

Further more, the Project 18280 AGI’s are not designed for operations in areas such as the Black Sea, but more for in areas further from Russian shores such as off the East coast of the USA – for example, those tasks carried out by Project 864 Vishnya-class AGI Viktor Leonov which is often operating near to Cape Canaveral and the USN Naval Submarine base at Kings Bay, Georgia. If Liman were to be replaced by anything it is more likely to be by one of the remaining Project 861 Moma-class AGS Survey/Research ships that the AGI versions were converted from. This makes even more sense if equipment was rescued before the ship sank as it would be an easy fit. My analysis of Liman makes me think it wasn’t a fully converted AGI as it still retained the crane on the forward deck, which other AGI’s had removed and that the AGS’s retain. This to me shows that not much structural work would be needed to get a quick replacement available – and at not much cost.

Liman, taken again by Yörük Işık, but this time in October 2016. Now the ship has the “Punch Bowl” SATCOM dome at the stern.

The statement by Tryapichnikov was more than likely a face saving one following the sinking of Liman and I totally expect Ivan Khurs to eventually end up with the Pacific fleet as planned. It may, however, first make a trip to the Black sea/Mediterranean to prove some sort of point.

Ironically, exactly one month later, Youzar Sif.H anchored to North West of the Bosporus awaiting its turn to transit through, having left Midia on the 26th May. It did so on the 28th, it’s destination this time is Misrata.

Whilst then, the dust has settled on the actual incident itself, it did highlight some other points.

Social media and its self-professed experts

Now, we all kind of love Social media and the internet – we do, there’s no denying it. After all, I wouldn’t be here doing this, I wouldn’t have access to endless amounts of information, data and history at the click of a button. But, what I ALWAYS do is check, check and check my facts.

I know my stuff, but am I an expert? No, I would say I’m not. It would be a dishonour saying I am to those that are actually experts. For instance, despite being quoted as a Jane’s Fighting Ships correspondent in IHS publications, I still quite often ask for advice from the yearbooks editor. He is after all an ex Commander of Royal navy ships, NATO and the MOD – totalling over 30 years in the Royal navy. I’m, in reality, an Air Traffic Controller that has a high interest in the Russian navy because of my “hobby” of monitoring their ship HF frequencies. One thing, has effectively led to another.

What this incident has very much highlighted is just how quickly false information is put out to the World without any actual analysis before doing so.

Take the operations of Heather Sea. Many social media “experts” stated that Heather Sea was sent to the aid of Liman when in fact, from simple analysis of AIS information, it was obvious that the ship had departed Varna in Bulgaria at approximately 2030z on the 26th April – some 12 hours before the collision reportedly took place! Very clever of the Russians to know that the collision was going to happen and send a ship there, ready for it to take place! Moreover, Heather Sea remained on its task site for over a week, 20 to 30nm from the position of the collision – having arrived there at 1500z on 27th April, some 8 hours after the reports of the collision started to filter through. It is fitted with modern ROV’s and so would have been ideal to carry out rescue/recovery, but it didn’t. It had nothing to do with the rescue of the Liman and the “experts” had given out incorrect data and positions.

Other experts suggested, even betted, that the arrival of KIL-158 and Epron was so that Liman could be raised from the sea bed and taken back to base. This just shows sheer stupidity rather than any knowledge.

Epron taken by Yörük Işık

And then there are the “There is something highly suspicious about this incident” people of social media. They deny it, but they are similar to conspiracy theorists. And I say this because unless they carry out full analysis on what happened and look into every possibility, what they are stating as fact, is actually incomplete and cannot be relied upon. Their ignorance and stubbornness of just basic principles again shows them as being a theorist – and yet, they say they are an “expert” even when they are shown strong evidence that shows their thoughts as being wrong. Even worse is the fact that some get a social-media following that believes everything they say and that they are an expert – this leads them to believe even more so that what they are saying is correct, when it isn’t.

One ridiculous suggestion was that Liman was jamming the AIS frequencies with its operations. Firstly, why would it have only hampered Youzar Sif.H, as every other ship in the area at the time was perfectly ok; and secondly, it would be a very clever ship to be able to carry on its frequency jamming from the depths of the Black Sea as other ships, including Youzar Sif.H on its revisit this weekend, have been lost from AIS receivers – as shown later on.

Let’s get back to Liman then, and the events leading up to the collision.

There are people out there that have stated that Youzar Sif.H had drifted off-course or wasn’t on the standard route and had even switched off their AIS equipment to hide this. Firstly, there isn’t a set course for getting from Midia to the Bosporus – the ships can get there in whatever route they want to. The fact is though, that they are on a schedule and want to get there the quickest and cheapest way possible and so they will go direct.

The social media experts have concluded that Youzar Sif.H was off-course because they ran a quick look at the traffic density data available on MarineTraffic. Now this data is all well and good, but it has it’s faults. The main one is that the data is basic. It draws a line from one point to another, taken from position reports from AIS data – and if the there’s a gap of 100nm it will draw a line still between these points. In areas of no AIS receiver coverage these lines will still be drawn, but there’s no proof that the ship actually travelled this course. The same principle occurs with all other basic online AIS software providers, including AISLive provided by IHSMarkit.

Youzar Sif.H was tracked pretty well after departure and did deviate from the route shown on the traffic density maps, but only just. A few hours before the collision took place Youzar Sif.H was no longer tracked by any MarineTraffic or AISLive feed, until at 0813UTC when it appeared again. Not long after, the collision took place.

Because the ship was tracked fully after the collision it has been alluded to by some that the AIS system on Youzar Sif.H was switched off for a while, and was only put on again just before the collision. Now why would a ship carrying sheep do such a thing, especially in dangerous conditions such as fog? The ship had nothing to hide, and the likelihood of switching off the one thing that would help them from hitting another ship in such conditions is certainly unlikely. AIS is only useful if all ships carry it, and here Liman didn’t. No doubt there would have been a basic primary return on the radar of Youzar Sif.H but it may well have been too late by then. The cause was that Liman was operating in fog with no anti-collision system in place. To further add to the conspiracy theory, Youzar Sif.H was able to be tracked most of the way back to Midia.

Youzar Sif.H transiting the Bosporus on the 28th May 2017 taken by Alper Boler

I go back again to me saying that I’m not an expert, but I’ve listened to radio since I was around 13, especially Air Traffic Control. This led to my 28 year career in the RAF and Civil ATC. From this I’ve learnt about how radio waves travel. But am I an expert in this principle? No, I’m not. There are guys and girls out there that know a hell of a lot more about it than I do. Here’s the thing though. I know the basic principles.

A very basic and simple fact is that Very High Frequency (VHF) radio transmissions travel with a line of sight principle called the Radio Horizon. In other words, two antennas need to be “in sight” of each other to receive that which the other is sending. No, you don’t actually have to see the other one, but in theory you need to be able to – in most cases. There are other principles and phenomenon such as VHF Tropospheric Ducting which allows for radio waves to travel hundreds of miles, but even then they can skip the hundred miles in-between leaving a null zone.

Take ATC again. The higher an aircraft is, the more likely it is to receive a signal from the ground as the “line of sight” is better, though it does also rely on the power of the transmitter. The curvature of the Earth can stop this and does. As an example, at work we have difficulties sometimes with USAF C-130 Hercules aircraft that are operating at the furthest range of one of our transmitters when they are cruising at FL230/FL240 – the Earths curvature, along with where the antenna is placed on the airframe gets in the way. Two or three thousand feet higher and they would receive us. If flying towards the transmitter then this isn’t a problem as the aircraft will come over the horizon and within “sight” of the transmitter, but going away means that sometimes a relay is required from another aircraft.

The same goes for things such as Mode-S receivers widely available for tracking aircraft. They only have an optimal range before the amateur can no longer pick up traffic – actually, this applies to physical radars too hence why many countries have a large amount of them to cover the whole country, and further. Stick a mountain, or even just a small hill somewhere and the reception range will be reduced for aircraft “below the horizon”. There’s a reason why military aircraft fly at lowlevel.

A great page for showing the principle of VHF reception is on Neal Arundale’s AIS page where it has a graph showing the principle.

My Mode-S antenna is on the roof of the house and I get a range of about 250 miles for aircraft that are at a high altitude. Out to the east of me, less than a mile away, is a hill of around 300ft which means I tend to lose aircraft descending into Edinburgh for instance when they go through around 15000ft – yet 200 miles away I’m picking up traffic over the North Sea.

My AIS antenna is lower than this. And it is in the loft. I have great reception to the North/Northwest, yet to the Southwest it is dead for me. Why? Well, because the signal from any ships has to not only pass through three houses, it also has to get through the three foot thick, sandstone walls of the house. The signal is wiped out.

My AIS coverage taken from MarineTraffic. Very strong to the North, but poor to the SW

Add to that that I am only a few metres above sea level and it makes my Radio Horizon not very good. You see, taking into consideration Neals data, I quite often struggle to get a small fishing boat which is between me and a large oil tanker that is further away that I am receiving. This is because, more often than not, ships radio masts are at the tallest point on a ship and an oil tankers one will be near on 60 metres above the sea, whilst a fishing boat around 10m. An oil tanker is also likely to have a more powerful transmitter as the ships size means it can carry bigger equipment.

So, where am I going here with relation to the Liman incident?

As previously stated, it has been suggested that Youzar Sif.H had switched off its AIS system. But a simple look at coverage information available on MarineTraffic would show that the Black Sea has some patches that are not covered very well by AIS receivers. I always say this about things like AIS or Mode-S feeds – they are only as good as the information that is fed to them.

The image here shows the coverage from the two main receivers for the area approaching the Bosporus from the Black Sea from this afternoon – 29th May. The receiver to the NW is on a 90m high block of flats and the one at Istanbul is on a two storey building on a hill. They have a great range because of this height. But, nearly the entire area SE of Varna is blank. These receivers do not pick up anything. Now, these coverage maps, like the density ones, can be a little false because they only work because they’ve picked something up, so the darker areas that show a dense level of traffic here, could be lighter at another time due to a quieter day – and vice-versa. But I’ve been looking at these areas frequently since the incident to see if my conclusions are correct, and they have remained pretty much the same. Further north are a few more receivers, but except for one they rarely stretch far into the Black sea – in other words there is a reception black hole for the receivers that feed MarineTraffic and AISLive. It just so happens that Youzar Sif.H travelled through the black-hole on the day of the collision.

This image shows the coverage from the Elena Station in Bulgaria which has fantastic coverage of the Black Sea in this region, but even this has reception black holes, particularly on the Youzar Sif.H route.

The image below shows the reception plots of Youzar Sif.H on the 26/27th of April on AISLive

Whilst the image here shows the reception on the 26/27th of May. This one is in fact worse than the day of the collision! It went near 14 hours without being picked up by any AIS receiver that fed AISLive.

Not only does this happen to Youzar Sif.H, it happens to many other ships that travel the same route.

This is the reason why Youzar Sif.H was not picked up until just before the collision and not because of stupid reasons such as it had switched off its AIS or been jammed by the operations of Liman. In fact, it had its AIS on at all times and other ships within its Radio Horizon would have picked it up, just as it would have picked up the other ships.

Now, the conspiracy theorists will be saying ” Well, hang on, Youzar Sif.H was tracked very well following the incident”. Well yes it was, but there’s a couple of good reasons why. Firstly, the main antennas on Youzar Sif.H are at the back of the ship but it also appears that there is one at the front on the mast. Is this the AIS antenna? Whilst it is hard to see which one it would be, if it is the one at the front this would explain a lot. The average reception distances for the stations is interesting for the day of the incident. The Elena station showed an average of 112nm which actually nearly corresponds to the site of the collision, so this station was covering out to that area. The signal from Youzar Sif.H would fade as it travelled away from the receiver. But after the accident and it was heading back to Midia, the front of the ship would have been facing the receiver which could mean a better signal getting through. The fact that on its journey back to the area this weekend produced the same tracking results, if not worse, than the incident ones shows that Youzar Sif.H has problems with being tracked in certain areas.

The station on the flats at Burgas had an average range of 26nm and would have possibly covered the early part of the voyage too.

And the Istanbul receiver only had an average of 10nm – but again this is roughly where the collision took place, and of course, Youzar Sif.H was head on to the receiver.

At the end of the day, I doubt we’ll ever find out for sure what happened. But I can honestly say that I believe it was a pure accident, and the fact that no AIS data was received from Youzar Sif.H was down to the pure science of a lack of radio reception at the AIS receivers covering the area, rather than the switching off of the systems on the ship.

One thing is for sure though. Those people that insist on churning out information, data and theories need to be sure to get their facts right first; and they need to do some basic research on things that they are commenting on. Otherwise they just make themselves look like complete idiots.

Quick LNA4ALL test

Despite the best efforts of the Royal Mail service, I have been able to get my hands on a Low Noise Amplifier created by Adam at LNA4ALL. The Royal Mail showed just how useless it is, when the parcel arrived here in the UK in just 11 hours from Croatia on February the 14th, but then not getting delivered to me until March the 14th – yes, one month! There is no surprise that courier companies such as DPD and Hermes are getting more business than the Royal Mail – they are bloody useless.

Anyway, the reason for the purchase is for a later review on an AIS dongle that I will be testing, but which has unfortunately been possibly damaged before getting to me.

So, as I had some time to spare I thought I’d run a quick test on how the LNA performs against the claims that is shown on the LNA4ALL website. For the test I used a quickly built 12v to 5v PSU that was connected to a Maplin bench PSU and also a Rigol DP711 Linear DC PSU where I could ensure a precise power input. As it was, it was good that I used the DP711 because my quick PSU was only chucking out 1.2v at connection to the LNA4ALL, despite an unconnected output of 5v – some work needed there I think.

Despite this lower power the LNA4ALL still worked with just the 1.2v input, though the results where not as good.

Other equipment used were a Rigol DSG815 Signal Generator and a Rigol DSA1030 Spectrum Analyser (no longer available), along with various Mini-Circuits shielded test cables. The Rigol equipment I purchased from Telonic Instruments Ltd last year.

Below then is a table that contains all the relevant data. As you’ll see the Gain claim is pretty much spot on with some being over. Just a couple of frequencies are below that which is claimed, especially at 28 MHz.

LNA4ALL Frequency data

A couple of things to note.

Firstly, somehow I managed to miss testing 1296 MHz. I obviously didn’t put it in the table in Excel before I started 🙂 Also, the DSG815 only goes up to 1.5 GHz so I couldn’t test above that.

Secondly I ran a test for the AIS centre frequency of 162 MHz, for which there was no comparison to the LNA4ALL data. A gain of over 24dB though shows that the LNA would be perfect for those of you with AIS receivers that may want to get better reception. To prove the theory I compared the LNA reception against data without it connected to the NASA Engine AIS receiver that I currently use. In ShipPlotter I average a max range of around 15nm without the LNA, but with it connected this increased to around 22nm. The number of messages received also tripled as it was able to dig out the weaker signals.

The NASA Engine isn’t a bad receiver, but it is a frequency hopper rather than a dual monitor, and so it changes between the two AIS frequencies every 30 seconds (161.975 MHz and 162.025 MHz). I suspect a dual monitor would give better message numbers and range.

Below is a graph made using the excellent software by Neal Arundale – NMEA AIS Router. As you can see the message numbers (or sentences) for over an hour are pretty good – well, it is a vast improvement on what I used to get with my current “temporary” set-up, with 419 messages received in an hour. The software is available at his website, for free, along with various other programs that you can use with AIS. If you’d rather not use ShipPlotter he has created his own AIS Decoder which can be linked into Google Earth and such like. Visit his website for more information.

My antenna isn’t exactly top-notch. It is at a height of just 4 metres AGL in the extension loft, and it is made from galvanised steel angle bead used by plasterers to strengthen corners prior to skimming – this I cut down as a dipole for a target of 162 MHz. As usual with my trimming of antennas, I cut just too much off and ended up with it cut to 161.167 MHz. It gives a VSWR of 1.018 and Return loss of 40.82dB, with 162 MHz being approx. 30dB Return loss which equates to 1.075 VSWR – that will do.

Also, as I live right on the coast, about 50 metres from the sea, I’m practically at sea level, which doesn’t help much with range and signal reception either. Despite this the antenna produces great results, though it is just temporary until I can get a new homebuild up on the roof.

VSWR reading for the homebrew loft AIS Antenna

The LNA4ALL retails at various prices depending on what option you go for. I went for the aluminium box version so it was around £54 including the delivery. I had looked at a Mini-circuits equivalent, and when it looked like the LNA4ALL was lost I did actually order one. But this was nearly twice the price, and seeing as the LNA4ALL contains many components from Mini-Circuit I doubt it is any different really.

All in all the LNA4ALL is all you need to boost your weak signals – couldn’t get any more all’s in 🙂

Monitoring the Russian Navy Northern Fleet in CW

I have realised that I haven’t posted an article that I wrote for The Spectrum Monitor, published in October 2016, on monitoring the Russian navy Northern Fleet. Here it is its entirety, with a few extras. A French translation of the article is available at the bottom of the page.october20161

A brief history of the Northern Fleet

The Russian Northern Fleet has to be my favourite one of all the fleets for monitoring in CW mode. I suspect the main reason goes back to my childhood days, during the heat of the Cold War, when we were constantly warned about Russian submarines leaving the frozen north to wipe out the Western world with a nuclear strike from the deep. The Cold War days are long gone now, but the Northern Fleet (NF) continues to exist, be it in a much reduced way. However, things are afoot, and it seems as if the Russians may well be starting to build up their forces again in the frozen North.

In the 1950’s, when the first ballistic missile submarines were brought into service, the Northern fleet went from being the least funded of the fleets to the most funded. The direct access to the Barents Sea and North Atlantic meant that bases in the Kola Peninsula could let out SSBN’s almost undetected – something the submarine bases at that time in the Baltic would not, and still cannot, manage.

The Northern Fleet covers not only the Northern Coast of Russia, but also the White Sea, Barents Sea, Kara Sea and the Arctic. The main base is at Severomorsk with an additional base at Severodvinsk covering the White Sea. As well as these there are numerous outposts and smaller bases used by all vessels of the NF, including Submarines.

Severomorsk became the fleet’s headquarters at the end of 1956, taking over from Polyarny in the Kola Bay, but expansion throughout the whole area was rapid, effectively making the entire region one large base with many of the areas being “closed” towns. The bastion strategy was created to protect the ballistic missile fleet, most of which operated in the Arctic region, close to home, it was only the older class of missile boats that ran the risk of passing through the GIUK gap for the Eastern shores of the USA. With modern SSBN’s being created at a fast rate, these boats were built with the ability to launch their weapons whilst still in harbour – they actually didn’t need to go anywhere to bring about their death and destruction. The large destroyers and cruisers were created to protect the region, whilst the aircraft carriers, or aircraft carrying cruisers as they are known, were also constructed to defend the bastion areas from western submarine activity. Unlike US Carrier groups, the Kutzetsov-class aircraft carriers operated as a regional defender rather than a strike group leader, and because of this they only carried interceptor aircraft. It is only now that the single carrier remaining is being given an aircraft strike capability, though this hasn’t been entirely successful in the recent operations in the Mediterranean.

Webcams are a great source of information and can help in identifying either callsigns of ships or at least a potential build up in traffic. Here, Sierra II-class SSN “Pskov” departs Severodvinsk for trials of what is believed to be a sonar system. The required permanent attachments (only recently added) can just be made out on the bow of the boat

The bastions that were created weren’t totally impenetrable, We now have post-Cold War stories emerging of various missions by British and United States submarines that managed to infiltrate the protected waters. Collisions in 1992 and 1993 of Russian and United States submarines in the Kola bay highlight this very fact, though by this time the fall of the Soviet Union had already taken place, and the NF was in a big decline capability wise.

Just over an hour later after the departure of “Pskov”, Zvezdochka-class support ship “Zvezdochka” heads into the White Sea and was captured on the webcam. This ship uses the callsign RMNN on the CW networks.

Funding seemed endless for the Russian forces during the Cold War years, but with the end of the USSR, came the end of the funding. The NF no doubt felt the blow the most as the majority of the fleet were intended to act as a deterrent to the forces of the west and no longer were there these threats. Submarines and ships lay rotting in harbour, the carriers were decommissioned and the many outlying bases were abandoned. Nowhere else, from satellite imagery, shows more the effects of the fall of the Soviet Union navy than the ruins of remote outposts, small naval bases, SAM sites and wrecks of the NF that are scattered along the whole of the coast of Northern Russia. If you have quite a few hours to kill, going to Google Earth/Google maps and scouring the coastline will bring you to places where you can only imagine what it was like to live there, though many are still lightly populated. Google Earth’s linking to the photo website Panoramio brings you even closer to these locations with places such as Goryachiye Ruchyi and its images of a Primorye-class Intelligence ship wrecked on the shore (69°10’31.87″N 33°28’29.90″E) or the near abandoned submarine servicing base at Gremikha (Ostrovnoy), a “Closed city” complex on the shore of the Barents Sea (68° 3’54.14″N 39°27’30.64″E).

In its current form, the NF is still the largest in the Russian navy, consisting of approximately 80 warships, half of which are submarines. There is around this number again in service ships, tugs, Icebreakers etc. However, despite being the largest fleet, it isn’t the most modern! Most of the ships in the fleet are approaching the end of their career, having been upgraded on numerous occasions. The actual readiness of most of the ships is unknown but utilising the historical imagery facility in Google Earth shows that many of the ships have not moved for months, even years. They move from pier to pier, but this will be to make a landing area available for a serviceable ship and the move will unlikely to have been under the ships own steam. A good example is Kirov-class Battle Cruiser Pytor Velikiy which is either alongside or moored in the Severomorsk bay when analysing images from the last year or so. This ship is almost definitely waiting on its sister ship Admiral Nakhimov completing a substantial modernisation programme at Severodvinsk before having the same work carried out. Using Google Earth you can follow Admiral Nakhimov’s refit with the historical function at position 64°34’34.16″N 39°48’53.78″E, though it is very noticeable that the ship has been in Severodvinsk since 2003!

With satellite imagery available to the public getting better all the time, the use of Google Earth can help identify ships that are active by using the historical imagery function and noting any movement. Here, with just a small amount of work, I’ve been able to identify the ships in port at Severomorsk, including naming two if the ships. Taking notes of what is where on which dates helps with the analysis.

The main Severomorsk region is made up of seven bases, shipyards and nuclear waste facilities, including the submarine bases at Polyarny and Gadzhiyevo. Further to the North, and the frozen (and unfrozen now) Arctic are more bases, shipyards and nuclear facilities. Following the coast round to the White Sea, there are the base and shipyards of Severodvinsk and many other smaller ports and bases. It is this region of the NF that has generated many of the unknown CW callsigns that we have for the fleet.

The White Sea in itself can be classed as a big military testing area. Not only are trials carried out for new ships that have been built at Severodvinsk, it is also used for testing of ships out of maintenance, testing of new equipment such as sonar; and it is used heavily in weapons trials, including cruise missile testing. There is what is believed to be a weapons range at the entrance to the White Sea from the Barents, on the Eastern shore at Chizha (67° 4’12.71″N 44°18’17.18″E – the area surrounded by hundreds of craters, some of which are actually natural from meteorites) and to the West of Severodvinsk is the missile testing launch facility of Nyonoksa (64°38’44.78″N 39°13’21.78″E). Here they oversee the testing of cruise missiles, but from land based launchers.

The bigger missile tests, those from SSBN submarines, generally take place in the Barents Sea, with launch ranges set up when required in the areas between Murmansk and the White Sea. Most of these will point to the NE where the missiles will head for the Kura missile range.

Severomorsk also has webcams. Here the two images show how you can roughly log arrivals and departures of certain ships. In this image various ships can be seen including a Borey-class SSBN highlighted by the arrow. This is likely to be "Vladimir Monomakh" which left Severomorsk for its new base at Vilyuchinsk in the Pacific on the 15th of August. In the image below, captured just two hours later, the only Russian Aircraft Carrier, Kuznetsov-class “Admiral Kuznetsov” has arrived in port. This was undergoing pre-deployment maintenance and trials before she headed to the Mediterranean. You’ll also notice that the Borey has drifted around making it harder to identify from this angle.

Severomorsk also has webcams. Here the two images show how you can roughly log arrivals and departures of certain ships. In this image various ships can be seen including a Borey-class SSBN highlighted by the arrow. This is likely to be “Vladimir Monomakh” which left Severomorsk for its new base at Vilyuchinsk in the Pacific on the 15th of August. In the image below, captured just two hours later, the only Russian Aircraft Carrier, Kuznetsov-class “Admiral Kuznetsov” has arrived in port. This was undergoing pre-deployment maintenance and trials before she headed to Mediterranean. You’ll also notice that the Borey has drifted around making it harder to identify from this angle.

 

Monitoring the Northern Fleet

Whilst operating within the NF area of operations (AOP), instead of using the standard frequencies of 8345kHz and 12464kHz, the ships use a pool of frequencies in a regional network system. There are a large number of frequencies in this pool, seemingly all within a seasonal schedule system as used by other Russian forces networks. The interesting thing is that even though they do stick to the set frequencies available to use within a set period of dates, the selection of which frequency to use would appear to be random, though I doubt for a moment that it is.

Frequencies that have been used by the Northern Fleet in CW mode, downloadable in PDF format.

As there are so many frequencies available to the NF, the radio operators would need to monitor all of them for any calls that are made – this would be huge task. The theory is that within each season grouping there is an additional frequency network schedule that is either transmitted in a coded format, or it is in a document, which then tells both ends which frequencies to use on specific dates. In general, all the ships on the same day will use the same frequency so whatever system they use, it definitely works.

Sent out by Severomorsk (RIT) to callsign RLO, a collective callsign for all ships operating in the NF, “RADIOPROGNOZ” messages seem to be one of the main methods used by the NF to assist with this, an example of which is below.

RLO DE RIT QTC 110 34 1 0057 110 =
RADIO PROGNOZ
01024 03003 30000
00001 00006 30009
00002 00006 30010
00005 00006 40010
00006 00006 40012
00102 00006 30009
00001 00612 40009
00002 00612 40010
00005 00612 50012
00006 00612 50013
00102 00612 40010 =

In Cyrillic, RADIOPROGNOZ is actually радиопрогноз, and translated into English this means Radio Forecast, literally it is Radio Prognosis. Luckily, there’s plenty of documentation available that confirms that радиопрогноз refers to propagation, including the Great Soviet (and Russian) Encyclopaedia which states: Pадиопрогноз – forecast radio conditions on shortwave (as translated).

In the above RadioPrognoz example, if you ignore the first line of the message for now, it is clear that the first column is numbered regions and the second column is times (ignore first zero, it is a spacer, so 00006 = midnight to 6am). As far as I can find online there has only been a few messages logged by an amateur that refers to the afternoon (has column two with groups of 01218 and 01824), the majority have been morning ones only, but this is probably down to monitoring habits more than anything. Column three then refers to the MUF, Frequency range or frequency channel number in some way or other, and my thoughts are that the first number is possibly the lower frequency available, the other figure is the higher one, with spacer zeros in-between.

So, this would be helpful in determining what frequency or frequencies to monitor you’d think? Well, unfortunately not. Most of the frequencies used by the NF are in the 4MHz range which as you can see is pretty much covered by the propagation prediction. I can honestly say that it is still a bit of guesswork at the moment.

Going back to the first three groups, the first one refers to the date the forecast covers, in the case of the example it is 01024 = 01 (day) 02 (month of year) 4 (year without the first digit) or 1st Feb 2014. Not sure on the other two groups, but possibly average previous MUF numbers, solar activity etc. The zeros could well just be spacers like the rest of the message.

One final note on this is that as far as I’m aware, no other fleet uses RadioPrognoz messages.

Severomorsk, NE of Murmansk, is really one large military base made up of numerous small ones. The main base is at Severomorsk (which in itself also has two airfields), with Kola Bay being used for the Submarine fleets and small patrol boats used to defend the whole area. Polyarny is where you’ll find the Patrol Submarines and ships, with Gadzhiyevo being the home of the larger Submarines, including the SSBN’s.

All other messages found within the NF networks are those found elsewhere, including of course the FM-13 weather reports. Unfortunately, these are not as useful as they are when ships are operating outside of their AOR. As a lot of the ships tend to stick within the NF region there is little way of tying up the callsigns to the ships. Some of the ones we have been able to tie-up are the long range Hydrographic ships which leave the area frequently. Quite often their missions are given news space on official Russian navy webpages and newspapers, and with some investigation work most have been worked out. Some of the other larger ships have also been tied up including Udaloy-class Destroyer Vice Admiral Kulakov (CW callsign RGR35), with the others generally being tankers and support ships.

In one of my first TSM articles (Monitoring the Russian Navy – Part One) I mentioned callsign RMMA and how we worked out that this was Vishnya-class Intelligence ship Viktor Leonov of the NF, so if you are able to find that article then you can see how hard and how long it takes to sometimes work out which callsign belongs to which ship. Sometimes callsigns do fall into your lap though, such as NF Survey/Research Ship Yantar that has a callsign RMM91. This ship actually uses its CW callsign as its AIS identification callsign and can be fully tracked using any online AIS monitoring website. At the time of writing (18th Sept at 1330z) the ship is about 180nm east of Malta, heading east, and its destination is eventually Novorossiysk. Yauza, a cargo ship, was also tied up using AIS plots when an unknown callsign on CW was moored off the SE of England to wait to transit the English Channel. I took a quick look in the area using MarineTraffic and found the ship immediately. Just good luck really.

Not many ships in the Russian navy use AIS, but you will find that some of their smaller tugs are starting to have the systems installed. These ships are not CW fitted I doubt due to their operations, but they can be an indication of possible activity of larger when you see them moving. Tie these movements up to some areas that have webcams and you can get some interesting results.

I personally split my NF callsigns up into two regions. One that operates in all areas of the NF AOP, and another that operates in the majority within the White Sea. It’s not 100% accurate as the ships do move around, but there are some obvious ones that only ever stay in the White Sea. They are very active in this area, especially when it is the summer/autumn periods (when the White Sea isn’t frozen over) and especially when there are exercises and trials taking place. Ships seem to station themselves close to the same locations quite often and my guess is that they are guard ships closing off the whole of the area when tests are taking place. Because they rarely leave the White Sea, of all the callsigns that have been heard only one has been tied up – RMNN which is rescue tug Zvezdochka.

This image shows the areas in the White Sea that many FM-13 messages refer to, especially during weapons trials.

It is because of this rarity of leaving the White Sea that I find the NF fleet frequencies the most interesting. And, as I’ve said earlier, they can be extremely busy. One of the busiest weeks was down to the testing of a Bulava missile that was launched from a new Borey-class SSBN in 2013. Unlike most tests for SSBN launches which take place from the Barents Sea, this was from the White Sea because it was just a test of the submarines launcher system and not the actual missile. Because of this test there were around ten ships operating in the area for support and security, with around 30 FM-13 messages and others sent in a day.

Although it is fairly unlikely we will ever tie-up most of these NF callsigns, it is the challenge of analysis and intelligence gathering on what they could be that is the most fun part.

The main transmitter site for Severomorsk is the West of the city, NW of the main airfield on a hill overlooking the bay. Here is almost definitely the HF site (CW callsign RIT) and probably a VLF site. There are also numerous other transmitter and radar sites dotted around the whole area.

French translation of the article provided by Andre

December Warships International Fleet Review

As I said in my last post, I was expecting there to be a few of my images in the December edition of Warships IFR magazine. This has turned out to be correct.cover-dec16-wifr

 

 

 

 

 

 

 

Most of the images are part of an article on Exercise Joint Warrior 162 written by Phil Rood. Unmanned Warrior was also taking place at the same time (as part of Joint Warrior really) and the article also goes into detail about this too.

The editor of the magazine, Iain Ballantyne, has kindly allowed me to publish extracts from the magazine here.

robowarriorsprd1

robo-warrior-sprd2

Another of my images was included as part of a news item on the German navy and their recent order for five new Braunschweig-class corvettes.

wifr-germ-corvette

Further information on the magazine, including subscription plans, are available on their website – http://www.warshipsifr.com/

Recent published work and photography processes

It’s been a busy six months or so for me with regards to having work published.

My main work has been the continuous analysis of the Russian navy to assist the editor of Fighting Ships, Stephen Saunders, to keep the data in the yearbook as accurate and up to date as possible. This information is also used in the on-line version of the yearbook. The current 2016/2017 edition is now available with plenty of my Russian navy data included, along with photos that I’ve taken. jfs2016_001

As you know I stopped selling the yearbooks last year (apart from a large sale at the beginning of this year) and since then IHS have added older titles to their online store. Though not as cheap as I was able to get them, it may be worth taking a look to see if there’s any titles you may need in your collection. Here’s the link to the Fighting Ships page in the store.

As with all things involved with data analysis, looking into one thing generally off-shoots into another. From the OSINT work that I generally do for Fighting Ships, I normally have to take notes and data which would also fit into some of the other yearbooks. Some of this data has been sent to the various editors of the C4ISR yearbooks, which I hope will also be included in future publications. And there’s also photographs of radars, weapons and other systems that I’ve been taking over the last few years that hopefully will also be of use.

jir_july_001 jir_aug_001

 

 

 

 

 

 

 

The OSINT work also brought me to the attention of one of the IHS magazines, Jane’s Intelligence Review. Since May I have worked on three articles for this magazine, two in conjunction with other writers, and one on my own. I am currently working on two more pieces for them, but at this time I can’t divulge on the subject matter. jir_sep_001

The work has been very interesting indeed, and has brought me a couple of new acquaintances and friends from it. I’m hoping that that I can carry on with other articles for them once the two I’m working on now are complete. jir_aug_002

 
Another magazine by IHS, Jane’s Navy International, has used a couple of my photos in recent months with hopefully more to follow. The magazines can be subscribed to from the IHS magazine online store.

It’s good work editing images for magazines, but its certainly a lot harder than it used to be – in general for less money than what you used to receive. The advent of digital photography has reduced the prices one gets for inclusion in magazines, mainly due to the fact that so many people now do it and so the editors have a plethora of images available to them. The silly thing is that in the old days you used to only take the photo, normally on slide film (Kodachrome 64), with no further editing by yourself (unless you happened to process the images in your own darkroom – I didn’t!). You’d send away the film to Kodak who would process it for you, and then you’d check over the slides after they’d been returned, deciding on which ones to send away. The only real work needed was to annotate the slide with basic information, and include a letter with further notes and where to post the cheque payment if used. Of course, you’d never see the slide again, and so if you wanted to have a copy for yourself then you’d need to take two photos – it was costly business using slide hence the payments you received being greater than they are now for far less work (one trip to the USA cost me more in Kodachrome 64 than it did in flights!!).

These days, the full photo process takes much longer.

Take the recent Joint Warrior (JW) exercise that I photographed. For this exercise I set aside two days for the actual photography. I then needed a further four days to carry out the actual editing of the photos for various publications! With current copyright laws, and the fact that most publishers are aware that photographers send away the very same image for inclusion in different magazines, the publishers now insist on exclusivity with an image (including publication online). Because of this, as a photographer you have to think ahead about who you are taking photos for. With JW I was thinking of three main possible targets – Fighting Ships, Jane’s Navy International and Warships IFR. As well as these I also had to think about the various other yearbooks by IHS (C4ISR and Weapons). So, if one ship comes along I need to take at least three images of it, maybe milliseconds apart, to cover the three main publications. Multiply that by a few hundred and you can see that there is a lot of images to go through once back home.

Back home then, I now need to process the images myself – no longer do they go away to Kodak for initial processing, and the publication no longer fine tunes the image for what ever use they may have. You need to trim it, get the exposure and colours right and make sure it’s sharp. Not only do you need to edit each image, you also have to include additional information for each one. This needs to be a title, your name, copyrights, what the subject is, when and where you took it and any other information you may think is needed for the publisher. With over 400 photos to go through for this JW it took a lot of time to carry out the whole process – 4 days as I’ve already said. From the 400 or more images that I took, I sent away around 70. How many of those will finally end up being published is unknown but I hope that it is around half of them.

Saying all that, it really is good fun and I still enjoy seeing my photos in any publication, be it book or magazine. I recently bought a new gadget for my GoPro, a time-lapse timer that moves the camera, and I decided to test it out whilst editing one of the images taken at Joint Warrior. The result of that test is below:
 

 

wifr_001 Talking of having things published in Warships IFR, I have actually had quite a good amount put into print for this magazine recently. And I believe there is to be a good spread in the December edition with images taken from the Joint Warrior exercise that I have mentioned above. I also hope to start writing the occasional piece for the magazine.

I’ll keep you informed.

Fred T. Jane

Today, the 8th March 2016, marks the centenary of the death of Fred T. Jane, the founder of Jane’s Fighting Ships and all the off-shoots of products that now exist under his name. He was 50 years old.

Fred was discovered on the morning of the 8th March 1916 “dead in bed at his residence in Clarence Parade [Portsmouth]” and “had been attended during the past week or so by Dr Cole-Baker on account of an attack of influenza, and had also complained of heart trouble, but his sudden death came as a great shock”.

FTJ_002He lived quite an amazing life during those 50 years, too much for me to cover here, but luckily a book was written about him by Richard Brooks, published in 1997. The book is still available today, easily found on Amazon for instance, and is titled Fred T. Jane – An eccentric Visionary (From Ironclad Ships To 21st Century Information Solutions) – and it is a great read.

Not only did Fred invent Fighting Ships and All the Worlds Aircraft, he was one of the first people to have a motor car in the UK (including racing them), he was one of the first private pilots (though not very good going by all the crashes he had), he was a member of Parliament, he was a writer of Science Fiction (at the same time as H.G. Wells was writing on the very same subjects) and a very successful artist. It was the artistry and writing that got him into creating Fighting Ships, even though there were other successful books in existence at that time covering the same subject matter. It was his line drawings and silhouettes that made Fighting Ships stand out from the rest, and it is why the books are still in existence to this day whilst the others have dwindled into the past.

As well as writing and illustrating his own Science Fiction, he created artwork for other writers, including this for the book "Olga Romanoff" by George Griffith in 1893.

As well as writing and illustrating his own Science Fiction, he created artwork for other writers, including this for the book Olga Romanoff by George Griffith in 1893.

Taken from the 1932 edition of "Fighting Ships", the earliest in my collection.

Taken from the 1932 edition of Fighting Ships, the earliest in my collection.

The early Fighting Ships books, the first of which was printed in 1898, went into extraordinary detail. These included the same details as is found in todays editions – weapons, crew numbers, engine types, speed etc., but also down to such details of the thickness of hulls in the various areas of each ship. The details on guns and armoured hulls were given comparative identifiers to show that a certain type of gun was capable of piercing a certain type of armoured hull. It was from this that the use of the books became manuals in “WarGames”.

Four metres of "Fighting Ships". Nearly every edition from 1946 to 1995, plus the earliest I have from 1932

Four metres of Fighting Ships. Nearly every edition from 1946 to 1995, plus the earliest I have from 1932

Now, these WarGamers weren’t just “nerds” sitting around at home, these were Naval Officers who used the information for training and strategy building, although the game was available to the public too. Prices at the time ranged from 4 guineas to £40 (around £4,400 in todays money), though the top end product “contained practically all the warships in the world” and was used primarily by various navies, including the Japanese Navy. The “games” came with model ships as part of the boxed set.

The early editions were in Landscape format, with different "standards" available - the "top end" versions were leather bound.

The early editions were in Landscape format, with different “standards” available – the “top end” versions were leather bound.

Though the Royal Navy was very slow in taking up the game, the Russian Navy were extremely interested in it and invited Fred to St. Petersburg in 1899 where he met Tsar Nicholas II. Grand Duke Alexander Mikhailovich even wrote the preface to the 1899 edition of Fighting Ships, the Duke being the Tsars brother-in-law. Fighting Ships isn’t even officially sold to anyone in Russia anymore.

"The British Battle Fleet" first edition from 1912

The British Battle Fleet first edition from 1912

Thanks to this trip, Fred was able to publish an off-shoot book titled The Imperial Russian Navy which led further to The British Battle Fleet – a book I have in my possession in its first edition format. It is thought that to this day, no one else outside of Russia has had such access to their fleets. Fred became good friends with members of both the Russian and Japanese Navies, something that caused him grief later on during the Russo-Japanese War of 1904-05 where he lost friends on both sides.

Fred died on his own, though he had an estranged wife and a daughter, but his legacy still lives on today. Ironically, the house he died in was bombed by the Germans in the Second World War, but flats that were built there in its place has a plaque commemorating his name. FS15-16

I’m very proud to have had my photographs printed in recent editions of Fighting Ships and I enjoy very much the research I do on the Russian Navy that I then forward on to the yearbooks current editor, Commodore Stephen Saunders RN. He is just the eighth editor in the 118 years of publication.

For more information on Fred T. Jane, please look up the previously mentioned book by Richard Brooks – you won’t be disappointed.

Fighting Ships 2015/2016

This years edition of Jane’s Fighting Ships, edited by Commodore Stephen Saunders RN, is now available to purchase from IHS for a wallet crunching £825.

There’s around 50 of my images in this edition, along with data I provide on the Russian Navy. FS15-16

Whilst this is good news, there’s also bad news regarding IHS Jane’s publications.

For the last few years I’ve been selling the older versions of the yearbooks that IHS have been unable to sell. Being two years old the books were discounted heavily to me to bring them within the prices enthusiasts would pay for a book.

Unfortunately, this is no longer the case. I shall be updating my sales page in the near future with information on how you can go about purchasing these older books, along with prices etc.

I expect though, that I shall be closing down my direct sales.