Recent published work and photography processes

It’s been a busy six months or so for me with regards to having work published.

My main work has been the continuous analysis of the Russian navy to assist the editor of Fighting Ships, Stephen Saunders, to keep the data in the yearbook as accurate and up to date as possible. This information is also used in the on-line version of the yearbook. The current 2016/2017 edition is now available with plenty of my Russian navy data included, along with photos that I’ve taken. jfs2016_001

As you know I stopped selling the yearbooks last year (apart from a large sale at the beginning of this year) and since then IHS have added older titles to their online store. Though not as cheap as I was able to get them, it may be worth taking a look to see if there’s any titles you may need in your collection. Here’s the link to the Fighting Ships page in the store.

As with all things involved with data analysis, looking into one thing generally off-shoots into another. From the OSINT work that I generally do for Fighting Ships, I normally have to take notes and data which would also fit into some of the other yearbooks. Some of this data has been sent to the various editors of the C4ISR yearbooks, which I hope will also be included in future publications. And there’s also photographs of radars, weapons and other systems that I’ve been taking over the last few years that hopefully will also be of use.

jir_july_001 jir_aug_001

 

 

 

 

 

 

 

The OSINT work also brought me to the attention of one of the IHS magazines, Jane’s Intelligence Review. Since May I have worked on three articles for this magazine, two in conjunction with other writers, and one on my own. I am currently working on two more pieces for them, but at this time I can’t divulge on the subject matter. jir_sep_001

The work has been very interesting indeed, and has brought me a couple of new acquaintances and friends from it. I’m hoping that that I can carry on with other articles for them once the two I’m working on now are complete. jir_aug_002

 
Another magazine by IHS, Jane’s Navy International, has used a couple of my photos in recent months with hopefully more to follow. The magazines can be subscribed to from the IHS magazine online store.

It’s good work editing images for magazines, but its certainly a lot harder than it used to be – in general for less money than what you used to receive. The advent of digital photography has reduced the prices one gets for inclusion in magazines, mainly due to the fact that so many people now do it and so the editors have a plethora of images available to them. The silly thing is that in the old days you used to only take the photo, normally on slide film (Kodachrome 64), with no further editing by yourself (unless you happened to process the images in your own darkroom – I didn’t!). You’d send away the film to Kodak who would process it for you, and then you’d check over the slides after they’d been returned, deciding on which ones to send away. The only real work needed was to annotate the slide with basic information, and include a letter with further notes and where to post the cheque payment if used. Of course, you’d never see the slide again, and so if you wanted to have a copy for yourself then you’d need to take two photos – it was costly business using slide hence the payments you received being greater than they are now for far less work (one trip to the USA cost me more in Kodachrome 64 than it did in flights!!).

These days, the full photo process takes much longer.

Take the recent Joint Warrior (JW) exercise that I photographed. For this exercise I set aside two days for the actual photography. I then needed a further four days to carry out the actual editing of the photos for various publications! With current copyright laws, and the fact that most publishers are aware that photographers send away the very same image for inclusion in different magazines, the publishers now insist on exclusivity with an image (including publication online). Because of this, as a photographer you have to think ahead about who you are taking photos for. With JW I was thinking of three main possible targets – Fighting Ships, Jane’s Navy International and Warships IFR. As well as these I also had to think about the various other yearbooks by IHS (C4ISR and Weapons). So, if one ship comes along I need to take at least three images of it, maybe milliseconds apart, to cover the three main publications. Multiply that by a few hundred and you can see that there is a lot of images to go through once back home.

Back home then, I now need to process the images myself – no longer do they go away to Kodak for initial processing, and the publication no longer fine tunes the image for what ever use they may have. You need to trim it, get the exposure and colours right and make sure it’s sharp. Not only do you need to edit each image, you also have to include additional information for each one. This needs to be a title, your name, copyrights, what the subject is, when and where you took it and any other information you may think is needed for the publisher. With over 400 photos to go through for this JW it took a lot of time to carry out the whole process – 4 days as I’ve already said. From the 400 or more images that I took, I sent away around 70. How many of those will finally end up being published is unknown but I hope that it is around half of them.

Saying all that, it really is good fun and I still enjoy seeing my photos in any publication, be it book or magazine. I recently bought a new gadget for my GoPro, a time-lapse timer that moves the camera, and I decided to test it out whilst editing one of the images taken at Joint Warrior. The result of that test is below:
 

 

wifr_001 Talking of having things published in Warships IFR, I have actually had quite a good amount put into print for this magazine recently. And I believe there is to be a good spread in the December edition with images taken from the Joint Warrior exercise that I have mentioned above. I also hope to start writing the occasional piece for the magazine.

I’ll keep you informed.

Advertisements

The Spectrum Monitor article June 2016

tsm_june_001A few months later than normal, but here’s a copy of my article from the June edition of The Spectrum Monitor

Russian Navy around the World

The Russian Navy has started to get active again after the usual period of rest over the winter months. The main reason for this is because most of the areas the Navy operate from in the North are frozen over, and are only just now starting to thaw out. There are three busy areas that produce the most traffic in the summer, but one of those practically disappears over the winter; and that is the area that falls under the command of the Northern Fleet, and in particular the White Sea. I intend to cover the Northern Fleet in much greater soon.

One thing that is noticeable is that the fleets seem to have moved to a more regional network of frequencies. They used them anyway before, but in general they tended to stick to 8345 kHz at night and 12464 kHz during the day as the main ship frequencies. I suspect that with the large increase of ships becoming active these frequencies were getting saturated with calls – something that was becoming noticeable as ships were “stepping” on each other. I mentioned last time that these main frequencies were quiet, and it now looks like this it was the reason.

As I say, I’ll go into regional stuff through the rest of the year so I’ll concentrate on a couple of interesting things that have happened over the last few months.

One of my favourite ships is Admiral Vladimirskiy, a Akademik Krylov Class Survey/Research Ship that uses the CW callsign RHO62. From late August 2014 this ship carried out a round the world trip, starting from the Baltic Sea headquarters at Kronshtadt, routing around the north coast of Russia through the Barents Sea, Kara Sea, Laptev Sea, East Siberian Sea and through the Bering Straits. From there it head south down to Taiwan and then across the Pacific to Corinto in Nicaragua, down through the Panama Canal, across the Atlantic to Brest, through the English Channel and home to Kronshtadt. It returned home on the 18th of January 2015 – a huge trip and one that our small group of monitors was able to track the whole way round, probably getting around 95% of all weather/TESAC reports that it sent. After that, it needed a good rest, and that it had until November last year when it set sail for the Antarctic.

Again, we have been able to follow its travels all the way down to the Northern edge of the Antarctic Ice belt, where it operated for some time near Davis Station, part of the Australian Antarctic program. They have a great website which provides various webcams, but unfortunately Vlad didn’t get within their sights. It’s worth checking out their website, just so that you can watch the fascinating time-lapse videos that are produced from the webcams. Vlads route took it this time through the Med, through the Suez Canal, the Gulf of Aden, along the East coast of Africa, stopping off at Madagascar for Christmas. Then it was down to Port Elizabeth in South Africa, before its final push to the Antarctic, getting there mid-January. For its time down to around Madagascar it stuck to 8345 or 12464 for its reports, but later on it transferred to 8460 kHz where it then spent most of its time. It would try the other frequencies should it not get through of course, there’s a huge selection that it could choose from.

8460 kHz is noted as being used by RMP (Baltic Fleet HQ at Kaliningrad) but in fact Vlad was calling RJH25 to pass on its messages. RJH25 is a RX/TX site in Kyrgyzstan and in this case is used in simplex instead of the normal duplex. This was good because it meant we were able to get both sides of the conversation easier than having to monitor lots of frequencies in duplex mode. A link to Google maps is in my callsign list which shows the RJH25 antenna site.

Here is one of my receptions of a FM-13 weather report from the 15th February on 8345 kHz:
0010z RHO62 586 20 15 0301 586 = SML FOR RJH45 RJH48 RJH74 RJD38 =
15001 99655 30900 22233

rho62_davis_001

Distance from RHO62 to my Wellbrook Loop antenna using Google Earth

I’ve missed out most of the weather information to show the relevant data for positioning. The data equates to RHO62 being at 65.5S 90.0E heading SE @ 11-15kts. This is approximately 9670 miles from ship to my Wellbrook Loop antenna!! I must say, I am very pleased with that achievement.

So, what are the Hydrographic ships of the Russian Navy doing? Their main task is to carry out data acquisition of the waters that the Russian navy operate in, which is why the TESAC is very important to them. The checking of sea temperatures against salinity levels helps them in various ways, but there are two particular reasons for this data. One, is that temperature and salinity actually affect how torpedoes and missiles from underwater launches travel through the water – the higher the salinity and colder the sea water is, the more it can cause drag. The second is for much the same reason, but in this case it is for Submarines. Not so important for the Nuclear powered ones, but a little more so for the SSK’s as this can affect the time they can stay underwater before requiring to surface to “snort” and power up their batteries.

The TESAC data also provides the depth of the sea though most of the Hydrographic ships will have equipment that fully maps the sea beds. Again, depths are important, especially for the Submarine fleets, and I suspect they use these ships to map potential routes to strike areas for the SSBN’s. You see a good amount of Hydrographic ship activity in the Northern waters of the Arctic for instance, as with the higher sea temperatures, and the receding Ice cap, more routes are becoming available there – and this is useful for the ships too.

And finally, of course, the Hydrographic ships will be providing information to the Russian Government, not only on things like climate change but also in the search for oil and minerals. The Russians have a civilian Hydrographic fleet for this, but it is not large and so they will use data acquired from the navy too.

The navy fleet consists of around 80 ships that are potentially capable of providing Hydrographic readings, though it is hard to find out exactly whether each one can or cannot. There’s certainly quite a few in the Baltic, where they test the SSK’s and torpedoes. And there’s also plenty in the Northern fleet which has a huge areas in the Barents Sea and White Sea for the testing of missiles launched from SSBN’s. They will use the Hydrographic ships to analyse the water before and after any trials of the submarines or weapons.

Monitoring 8460 Khz for RHO62 also brought us some luck with another callsign, RMGZ, a Prut Class Submarine Rescue Ship named Epron. This had in late summer 2015 travelled east from its home at Sevastopol in the Black Sea, again via the Med and Suez Canal where it was eventually lost from our radios off the east coast of Sri Lanka. It had been erratic on 8345 up until then anyway, and this was probably because it looks like it was using 8460 as its primary frequency. Of course, we didn’t know this as we weren’t monitoring it. Epron was heading towards Visakhapatnam in India to take part in exercises and later on in a Navy exhibition. My furthest east report from it was at 16.3N 82.5E, about 50km SW of Visakhapatnam. Epron is now at home in Sevastopol after its long journey.

Prut-class Submarine Rescue ship “Epron” transits the Bosporus on its journey home to the Black Sea – Photo by Yörük Işik

I mentioned last time Project 550 Large Dry Cargo and Passenger ship Yauza which uses the callsign RHM80. Yauza has been a very busy ship over the last few months as part of the Russian ferrying of equipment and troops to Syria – named by many as the “Syrian Express”.

In all, our tracking of RHM80 shows it made five trips to Tartus from either Sevastopol or Novorossiysk , both being Russian Navy bases in the Black Sea. The last trip to Tartus has ended, and instead of heading round towards the Bosporus, it headed towards Malta, arriving there on the 4th of April; it will probably travel onwards to its Northern Fleet base of Murmansk after picking up some supplies for the journey from Valletta. The Russian navy quite often uses Valletta as a stop off point and with plenty of ship photographers there, it is a useful port for tying up callsigns to ships.

Of course we will be tracking it all the way home on 8345 and 12464 as it is very good at sending FM-13’s every six hours as required. It also sends lots of “11111” messages – so called because of the first five figure group in messages to Moscow (RIW), Sevastopol (RCV) and Severomorsk (RIT). These are status messages I believe and of low priority, and are very common. But, you don’t need to be listening out on the Russian frequencies to track Yauza, you can just use MarineTraffic to track it. Just enter its name into the search area.

Yauza wasn’t the only ship involved in the “Syrian Express” so there was plenty of traffic from other ships. Some of the callsigns we know and some of them we don’t. There’s still a couple of Large Landing Ships that are avoiding us, but it looks like I have been able to tie-up at least one ship that is currently involved in Syria – and this is RKA80. This I believe is Slava Class Missile Cruiser Varyag, and it’s given itself away by sending messages via RCV for RJS, the callsign for Pacific Fleet HQ, Vladivostok. The messages started around the time that Varyag arrived in the Mediterranean Sea so time will tell if it disappears from the frequencies once it departs the operational area. It has recently stopped sending messages with the extra section for RJS so I wonder if it’s realised it was giving itself away? An example of their messages is here:

1900z RKA80 639 106 29 1230 639 = SML FOR RJS =
MMMMM ХАФЖШ ШЫЖКТ ….. ЦЦЬДЦ ВОПЫУ
АБПУИ = + RKA80

I removed most of the message for ease as this one was 106 groups long, but this was part of what looks like a standard schedule of three priority messages, each well into the hundreds of groups (normally around the 150 mark)

Well, I hope I haven’t gone on too much. Not much frequency information for you this time but I that I plan to change when I start with the Fleet information articles in the future. 8460 kHz monitoring has also bought us some other interesting things which wasn’t known before – but that would fill one article on its own.

As I say, keep an ear out on 8345 Khz and 12464 kHz. And if you’re on the West Coast of North America then try 8348 kHz which seems to be the Pacific Fleet primary CW frequency. If you do decide to give it a try then if you do manage to get anything, in particular from North America, then please do contact me either using my contact info in my blog, or via the TSM editor. I’m very keen to see what coverage there is elsewhere in the world.

Notes:
Since the time that I wrote the article I have confirmed that RKA80 is Varyag

Project 21631 Buyan-M class Patrol ship Zelenyy Dol transits the Bosporus, heading for its first ever patrol. It was heading for the port of Tartus as part of the Russian Syrian crisis fleet. Since this image was taken, sister ship Sepukov also deployed to the Med, and after further deployments both have transferred to the Baltic. Both of these ships will be two of the unknown callsigns we’ve picked up recently – photo by Yörük Işik

February’s Blackjacks

After a couple of days of teasing us with the standard “W” markers in CW, on the 17th February the Russian Air Force (Военно-воздушные cилы России [BBC России]) carried out a Long Range Aviation mission using two Tu-160 Blackjacks.

I was able to monitor nearly the whole mission on HF (both in CW and Voice USB), with a small amount on UHF (though no Russian Air to Air voice comms were received on VHF/UHF) and following some investigation into my data along with other logs and reports from the internet and friends, I can now compile a rough idea of the routing they took on their journey to the English Channel and back again.

The first reception I had that showed a mission was taking place was at around 0830z when a standard 3 figure group message was sent by IWV4 but unfortunately I was just setting up my gear and so missed it to write down. Further “W” markers took place at the usual every 20 minute schedule of 0840z and 0900z, with IWV4 sending another message at 0903z to the aircraft. This call gave us the CW callsign for the aircraft, probably the IL-78 Midas4YMA

Russian Air Force TU-160 Blackjack RF-94104 “Alexander Golovanov” © Crown copyright 2016

As is standard, the early part of the mission was relatively quiet on CW with markers only, though there was one unusual thing that took place around 0920z. Firstly there was no 0920z “W” (this only happened one other time for the whole day at 1600z – the 20 mins schedule was kept going solidly otherwise) and secondly, at 0922z, there was a sending of data on the frequency. The first eight minutes was a carrier tone centred exactly on 8112; with the full data commencing at 0930z continuing until 0943z. Unfortunately, the CW recording I had for the day got corrupted so I wasn’t able to analyse the signal to at least try and determine what type it may have been. Of course, it could have been coincidence as we all know that many of the frequencies used by the Russians are shared, but this does seem almost too good a coincidence. One thing is noteworthy in recent missions, and that is the big reduction in CW messages over the large increase of voice messages – are the Russians trying out a new data messaging system for their Long Range Aviation fleet?

8112 continued in the usual manner for most of the morning, with the occasional message or “radio check” [QSA] but there wasn’t much else. The Winter CW frequency for the aircraft side of the “Bear Net” had always alluded us and was in fact the only missing frequency we had for the whole net, so it was just the ground side of the duplex network that I was receiving. I had 8990 down as a back-up frequency for their voice comms and I was monitoring this frequency on my Icom IC-R8500 in USB mode, with all the remaining Winter frequencies on the Titan SDR Pro. I was also using the Titan to monitor most of the Oceanic frequencies in case they were coming this way, something useful to do as this can sometimes give away the rough position of the Russians. Because of this set-up I had the SDR monitoring the Oceanic frequencies in the 8MHz range. The bandwidth I’d allocated also incorporated 8990 and it was during a QSA check at 1205z from IWV4 on 8112 that I noticed a faint trace of CW on the frequency! I quickly changed the mode on the Icom to CW and caught the end – “QSA3” – nothing else followed, but it looked like I had found the Winter CW airborne frequency for the “Bear Net”. But, I had to be sure.

Russian Air Force TU-160 Blackjack RF-94101 “Paval Taran” © Crown copyright 2016

Up until now there had been zero voice comms on 8131, the primary Winter voice frequency, but not too long after the 1205z QSA check on CW the first call came with 44732 calling KATOLIK followed by a call to BALANS after not much luck with KATOLIK. There was one more call after this on 8112 before this frequency went to markers only, but there was a reply on 8990 confirming that this was the Winter CW frequency for the aircraft. The complete 8112/8990 transcript can be found in PDF format in my full CW log

Going from various reports, the Northern QRA had not launched so this led me to believe that the Russian aircraft were not coming in the direction of the UK, but when I noticed on my SBS that the Tanker was travelling north from Brize Norton, then I wondered if they were. The only comms I had was from the Tanker with Swanwick Mil so I presume (and with no logs showing anything from Lossiemouth) that a long range track of the Blackjacks was taking place.

Certainly, on Oceanic warnings were being passed about the “unknown” traffic heading south and it’s from this information that I’ve been able to roughly guess their initial routing, down through the Shetland Island and Faeroe Island gap to near ERAKA, before tracking south along the 10W line – like I say, a rough guess, but going on previous routes this won’t be far out. They probably got to around the NIBOG area before tracking SW to go around Ireland, before heading in again towards Lands End and the English Channel.

Voice comms on HF with BALANS was pretty continuous by this stage, with three potential callsigns heard. Two would have been the Blackjacks, 44731 and 44732, with a third more than likely the support IL-78 Midas tanker that remained clear up to the north and so was much weaker with me – I think it was 60991 but was too weak to tell, with only the readback from BALANS copied.

At about 1505z it was reported that two Typhoons from Coningsby that had launched about an hour before, and had been holding in ARA10W, had joined up with the “unknowns” and these were identified as Tu-160 Blackjacks. The comms were again picked up by Kyle, and the Typhoons gave full details including the tailcodes, with the lead aircraft being RF-94101, the second RF-94104. The Russians name their Tu-160’s and these are given “Paval Taran” and “Alexander Golovanov” respectively.

By coincidence, at 1510z, 44732 calls BALANS with a message starting 502. I always suspect that they send messages out when they’re intercepted and I expect this was one of those messages. It could well have been that they were entering the Channel though, it’s hard to tell, but certainly for the whole time they were in that area, the messages sent began with 502. Around 1600z the French QRA also joined up and from images produced by the MOD, these were shown to be a single Rafale and a single Mirage 2000C – callsigns noted on Fighter Control as MASTIFF01 and MARAUD03.

Russian Air Force TU-160 Blackjack RF-94104 with a French Air Force Rafale and Mirage 2000C © Crown copyright 2016

From there the Blackjacks turned around and I expect pretty much followed the same route back. I could certainly tell that they were near to me later on, they were ridiculously loud on HF.

Below then is a copy of my voice logs, along with the recordings I made. A good test of my recently installed Wellbrook Loop that I’d finally been able to put up on the mast just the week before, after having it for nearly three months! Scottish weather!!

NOTE – These recordings are copyrighted to me. It has been noted that other recordings have ended up on YouTube, uploaded by a third party. Should this happen with my recordings, further action will be taken

8131

1216z 44732 calls KATOLIK

1217z 44732 calls KATOLIK [KATOLIK very faint]

1218z 44732 calls KATOLIK, BALANS replies

1220z BALANS passes message 130 525

1222z BALANS calls 44731 numerous times
– Note, contains all of the above

1226z 44732 answers, BALANS passes message 130 525

1232z 44732 calls BALANS with message [too faint to copy]

[messages continue until 1245z, all too faint, multiple callsigns]

1302z 44732 calls BALANS with message 157 133 796 290 525 853

1306z BALANS and 60991[?] 532 598 757 706 057 162 363 395

1318z BALANS passes message 727 to 44732

1356z 44732 calls BALANS with message 197 077 950 525 305

1510z 44732 calls BALANS with message 502 549 447 360 981 848 842 366 215 492 481

1551z 44732 calls BALANS with message 502 956 447 339 822 532 842 942 563 592 339

1612z 44732 calls BALANS with message 502 411 447 132 196 010 565 564 978

1641z 44732 calls BALANS with message 926 429 564 695 525 447

1745z 44731 called by BALANS

1750z BALANS calls 44731 with message 861 408 850

1826z 44732 calls BALANS with message 976 170 408 953 525 055

160217map

Approximate routing of the Tu-160 Blackjacks

One final thing to note – on exactly the same day in 2015 (day of the year, not actual date, so the third Wednesday in February) the Russians carried out almost the same flight, going down the West coast of Ireland. Further information on that mission, including HF recordings, can be found in Bear Hunting – part two

Bet you a few quid they’ll be back same day next year 😉

Propliner is back

Around 11 months ago I reported the sad end of Propliner magazine in my article “End of an era”.

I’m very pleased to say that due to requests to the editor that Propliner be kept in some form or other, he has decided to try out whether it could succeed in an annual format.

In his words “Within days of announcing my decision to suspend publication of Propliner as a quarterly journal, I became aware of the enormous sentiment surrounding the magazine, and that there were a large number of disappointed readers.”

He continues ” Having remained in touch with many of the regular contributors and having canvassed their opinions, I have decided to go ahead and publish a Propliner Annual in April 2016″.ProplinerAd

A brief outline of what is intended in the first (and hopefully not last annual) was also given – 96 pages full of features and photographs, as well as news on the past years events. Further information is on the advert to the right.

Amazingly, the annual is still going to be priced very reasonably indeed. For those in the UK, it is to be priced at £11 including delivery, with Europe at £13. The rest of the World is still only £15 for air mail delivery.

The target publication date is April 17th and orders can be placed at the Propliner website

PlaneBaseNG Update

Another bit of aviation news is a new update to the PlaneBaseNG database software. I ran a review of the database just over a year ago if you’d like to look back at what I wrote. Otherwise, head over to the website for more information, screenshots etc. PBlogo

If you’re looking for an aviation database then this is definitely the one to have.

Fred T. Jane

Today, the 8th March 2016, marks the centenary of the death of Fred T. Jane, the founder of Jane’s Fighting Ships and all the off-shoots of products that now exist under his name. He was 50 years old.

Fred was discovered on the morning of the 8th March 1916 “dead in bed at his residence in Clarence Parade [Portsmouth]” and “had been attended during the past week or so by Dr Cole-Baker on account of an attack of influenza, and had also complained of heart trouble, but his sudden death came as a great shock”.

FTJ_002He lived quite an amazing life during those 50 years, too much for me to cover here, but luckily a book was written about him by Richard Brooks, published in 1997. The book is still available today, easily found on Amazon for instance, and is titled Fred T. Jane – An eccentric Visionary (From Ironclad Ships To 21st Century Information Solutions) – and it is a great read.

Not only did Fred invent Fighting Ships and All the Worlds Aircraft, he was one of the first people to have a motor car in the UK (including racing them), he was one of the first private pilots (though not very good going by all the crashes he had), he was a member of Parliament, he was a writer of Science Fiction (at the same time as H.G. Wells was writing on the very same subjects) and a very successful artist. It was the artistry and writing that got him into creating Fighting Ships, even though there were other successful books in existence at that time covering the same subject matter. It was his line drawings and silhouettes that made Fighting Ships stand out from the rest, and it is why the books are still in existence to this day whilst the others have dwindled into the past.

As well as writing and illustrating his own Science Fiction, he created artwork for other writers, including this for the book "Olga Romanoff" by George Griffith in 1893.

As well as writing and illustrating his own Science Fiction, he created artwork for other writers, including this for the book Olga Romanoff by George Griffith in 1893.

Taken from the 1932 edition of "Fighting Ships", the earliest in my collection.

Taken from the 1932 edition of Fighting Ships, the earliest in my collection.

The early Fighting Ships books, the first of which was printed in 1898, went into extraordinary detail. These included the same details as is found in todays editions – weapons, crew numbers, engine types, speed etc., but also down to such details of the thickness of hulls in the various areas of each ship. The details on guns and armoured hulls were given comparative identifiers to show that a certain type of gun was capable of piercing a certain type of armoured hull. It was from this that the use of the books became manuals in “WarGames”.

Four metres of "Fighting Ships". Nearly every edition from 1946 to 1995, plus the earliest I have from 1932

Four metres of Fighting Ships. Nearly every edition from 1946 to 1995, plus the earliest I have from 1932

Now, these WarGamers weren’t just “nerds” sitting around at home, these were Naval Officers who used the information for training and strategy building, although the game was available to the public too. Prices at the time ranged from 4 guineas to £40 (around £4,400 in todays money), though the top end product “contained practically all the warships in the world” and was used primarily by various navies, including the Japanese Navy. The “games” came with model ships as part of the boxed set.

The early editions were in Landscape format, with different "standards" available - the "top end" versions were leather bound.

The early editions were in Landscape format, with different “standards” available – the “top end” versions were leather bound.

Though the Royal Navy was very slow in taking up the game, the Russian Navy were extremely interested in it and invited Fred to St. Petersburg in 1899 where he met Tsar Nicholas II. Grand Duke Alexander Mikhailovich even wrote the preface to the 1899 edition of Fighting Ships, the Duke being the Tsars brother-in-law. Fighting Ships isn’t even officially sold to anyone in Russia anymore.

"The British Battle Fleet" first edition from 1912

The British Battle Fleet first edition from 1912

Thanks to this trip, Fred was able to publish an off-shoot book titled The Imperial Russian Navy which led further to The British Battle Fleet – a book I have in my possession in its first edition format. It is thought that to this day, no one else outside of Russia has had such access to their fleets. Fred became good friends with members of both the Russian and Japanese Navies, something that caused him grief later on during the Russo-Japanese War of 1904-05 where he lost friends on both sides.

Fred died on his own, though he had an estranged wife and a daughter, but his legacy still lives on today. Ironically, the house he died in was bombed by the Germans in the Second World War, but flats that were built there in its place has a plaque commemorating his name. FS15-16

I’m very proud to have had my photographs printed in recent editions of Fighting Ships and I enjoy very much the research I do on the Russian Navy that I then forward on to the yearbooks current editor, Commodore Stephen Saunders RN. He is just the eighth editor in the 118 years of publication.

For more information on Fred T. Jane, please look up the previously mentioned book by Richard Brooks – you won’t be disappointed.

TitanSDR Pro demonstration

After receiving quite a few requests on information about the Enablia TitanSDR and it’s capabilities, I decided it would be good a good idea to create a demonstration video that would hopefully show just how good an SDR it is. The video is at the end of this blog.

I think that a lot of people can’t understand just why the two versions are the price they are, especially when it seems that a new dongle SDR is being evolved every day at a ridiculously cheap price. Yes, they are expensive but when you compare the price of these SDR’s to a top end desktop receiver, such as the Icom IC-R8500 for example, then it is fairly comparable.

But you must consider the fact that the Titan is really more than one receiver. The Pro version is 40 receivers, the standard is eight. You can’t record independently using the Icom, you need some additional software or a digital voice recorder plugged in to the receiver; and even then you can only record the one frequency – the Pro can record 40 frequencies, the standard can record eight.

The TitanSDR Pro can monitor up to 40 frequencies at the same time. Here, 10 frequencies are being monitored, mainly Oceanic ones.

The TitanSDR Pro can monitor up to 40 frequencies at the same time. Here, 10 frequencies are being monitored, mainly Oceanic ones.

Then, you can’t really record any bandwidth to play back using the Icom, but both versions of the Titan can record up to three separate bandwidths. These can then be played back, either through the SDR itself, or on another PC using the supplied USB dongle that carries a second version of the software – and if you did this you could be listening to, or recording, further frequencies or bandwidths. And all these separate bandwidth recordings can, of course, be played back multiple times, with multiple recordings being made within them; or data can be decoded; or signals analysed – what ever you require from an SDR.

This image shows the Titan monitoring 12 frequencies, 6 of which are decoding ALE using PC-ALE. This can take place in the background, while listening to the other frequencies on the SDR.

This image shows the Titan monitoring 12 frequencies, 6 of which are decoding ALE using PC-ALE. This can take place in the background, while listening to the other frequencies on the SDR.

But, of course, this is just standard for any SDR isn’t it?? But is it?? Can you think of another SDR that has the capability to monitor/record 40 frequencies at once? I can’t.

The nearest SDR I found to the Titan in quality of not only recording capabilities but in quality of filters etc. meant that I would need to buy around 13 SDR’s of this model and spend over €30,000. Yet, just one of this model costs pretty much the same price as the Titan. Now, with that knowledge, the price of the TitanSDR’s really doesn’t seem that bad after all.

Don’t forget, the TitanSDR is a Military spec. SDR, designed originally for agencies to monitor multiple frequencies for analysis and data collecting. It already has top specifications but Enablia are still willing to listen to the users and add requested features if they can. They have already done this with quite a few ideas that myself and other users have suggested.

You'd think that the Titan would be a CPU guzzler wouldn't you? Well it isn't. Here the SDR is running 31 frequencies, multiple decodings using MultiPSK, and PC-ALE. The CPU is running at only 27%, and that was it's max reading.

You’d think that the Titan would be a CPU guzzler wouldn’t you? Well it isn’t. Here the SDR is running 31 frequencies, whilst making multiple decodings using MultiPSK and PC-ALE. The CPU is running at only 27%, and that was it’s max reading.

 

Monitoring the Russian Navy – Part One

As I normally do, a few months after publication in The Spectrum Monitor, here’s one of my articles that was published in the February edition.

Monitoring the Russian Navy – Part One

Amur Class Floating Workshop PM-138 (ПМ-138) passes through the Bosporus. This uses the callsign RBIZ (РБИЗ) on the CW networks. PM-138 is part of the Black Sea Fleet and normally carries out a six month rotation off Tartus, Syria, with the Amur Class PM-56 (ПМ-56), callsign RIR98 (РИР98) - Photo by

Amur Class Floating Workshop PM-138 (ПМ-138) passes through the Bosporus. This uses the callsign RBIZ (РБИЗ) on the CW networks. PM-138 is part of the Black Sea Fleet and normally carries out a six month rotation off Tartus, Syria, with the Amur Class PM-56 (ПМ-56), callsign RIR98 (РИР98) – Photo by Yörük Işık

As I said in one of my first articles for TSM, I only really got back into HF monitoring because of my move to Scotland and treating myself to a desktop radio for listening to VHF/UHF. I decided to push the boat out and get an Icom IC-R8500 as I’d always fancied one and the specifications, as we all know, are top notch. I also thought that as I was going to be working in the same room as Shanwick Oceanic that I would get something that would let me listen to them, I used to love listening to Shanwick. Of course, I soon discovered a lot had changed on the Ocean and the HF got put aside for a while.

It was whilst reading through a Military aviation forum that I noticed that a couple of guys had been monitoring the Russian navy using CW, and that what they had been tracking was possibly the Kiev Class Aircraft Carrier Admiral Kuznetsov and its carrier group. Well, I found this fascinating and started listening to the same frequencies they had listed to see if my makeshift antenna could get anything – and sure enough it did.

Since I was a kid I’d been interested in Russian military hardware, after I’d been given a book called “The Soviet War Machine” to read when visiting my grandparents. Even though it was library book, I took it away on a long-term loan and read it hundreds of times, sucking in as much knowledge as possible. There was something about the design and ruggedness of all their equipment that intrigued me, and man, their Submarines were awesome!!

When I joined the RAF years later, my interest in the Russians changed from the navy to the Air Force and Nuclear threat that I was now (in theory) facing. And from then, up until the moment I found out about monitoring the Russian navy on CW, I didn’t really think much about the navy again. Now I was really interested and I wanted to learn more about this side of monitoring.

Through the UDXF Yahoo group I found lots more logs and frequencies; and then I discovered Fritz Nusser’s great website at http://www.astrosol.ch/. Fritz unfortunately died in July 2014 and so did his website (the domain name now used by Asics trainers!!), but the information held there was nothing but brilliant – frequencies, callsigns, examples of messages, the navy bases and the ships in the different fleets. It was the perfect site for a beginner, which I most certainly was.

Well, now a few years down the line I hope I’m pretty good at what I know, though I can honestly say there are guys out there whose knowledge still amazes me – Trond Jacobsen from Norway for starters. What I’d like to do here though is show you how you can listen in on the Russian navy on CW, and amazingly, be able to track their positions.

The Basics

First of all, I need to show you how the navy is divided up. It is split up into five fleets:
The Northern Fleet (NF) – HQ at Severomorsk
The Baltic Fleet (BF) – HQ at Kaliningrad
The Black Sea Fleet (BSF) – HQ at Sevastopol
The Caspian Flotilla (CF) – HQ at Astrakhan
The Pacific Fleet (PF) – HQ at Vladivostok

The Northern Fleet has recently been incorporated into a new Arctic Joint Strategic Command structure but still operates under its own command system, and it is by far the largest fleet in the navy. Within these fleets there are a large number of submarines and ships, around 265 in total with another 60 or 70 on order, divided between numerous bases within the fleets.

A close up of the antennas on Ropucha Class Amphibious Landing Ship “Novocherkassk” (Ножосхеркасск), callsign RFH71 (РФН71) – Photo by Yörük Işık

Each HQ has a CW callsign, as does each base and then each major ship. We haven’t found any evidence that smaller vessels, and by this I mean harbour tugs etc., have a CW callsign, and the same goes for Submarines. The tugs will be because they rarely leave the harbour area so would be within normal VHF/UHF range of the base; the submarines have other methods of contacting home though there’s no doubt they use VLF/HF for communications, just like the USN boats with EAM’s. I will say though that we also have a huge amount of unidentified callsigns and that these could in fact be tugs, submarines and such like. The likelihood is though, that most of these are smaller missile boats etc. that also rarely leave the confines of the waters they patrol – and also could be Border Guard ships that also use the same radio networks (they also don’t leave their home waters). There’s also the AGI’s or Intelligence Collection ships that use CW but don’t give away their positions, well most of the time anyway – more on this later. As well as the five fleets, there’s also of course Moscow to think of, and the actual Russian navy high command at St. Petersburg. These too make and receive calls and each has their own callsign.

My Russian Navy Callsigns page here on my blog lists all the CW callsigns that have been found, and if tied up, to which ship/base they belong to. It’s not complete, and there are still some changes that need to be made to it as some of the callsigns aren’t necessarily navy – more investigation and time is required on this front.

I will list the HQ callsigns here though:
Moscow = RIW
National Defence Control Centre, St. Petersburg = RAA
Severomorsk = RIT
Kaliningrad = RMP
Sevastopol = RCV
Astrakhan = RJD52
Vladivostok = RJS

To confuse matters though, St. Petersburg for instance, has a base callsign too – RJC66. This is the actual naval station as opposed to the HQ. And there’s also another callsign associated with Moscow, RJE56, which is the actual transmitter site which sends/receives calls – possibly when RIW (and RAA) are off-line – and these also tend to be between land units only, not to/from ships. RAA also only tends to send/receive to/from HQ’s with messages then forwarded on to ships (and vice versa). It’s not uncommon for bases to have multiple callsigns.

You’ll notice that all the callsigns start with an R which is common for the navy, the ships also beginning with the letter R. But there’s also some other elements within the Russian networks that start with this letter, and it’s because of this that confusion arises as to exactly what is navy and what isn’t – the naval (air) network also uses R as the first letter for instance. Each callsign is either three, four or five digits but there is no correlation between the callsigns and the base or ship name; and the ships don’t have a callsign that links into the base they’re stationed at – ships based at Sevastopol don’t start with RCV for instance. They are totally random.

So, that’s the basic callsigns completed – or is it?

You see, what we’ve done here, and what’s happened for many a long time, is that the CW has been “westernised”, turned into Latin Morse. But the Russians don’t use Latin Morse, they use Cyrillic Morse. Now, this doesn’t really matter that much as I’m “western” so I can use this system for callsigns, but it does throw up some problems when it comes to messages – again, something I’ll get onto later in another article.

If you don’t know Cyrillic CW, and I don’t, I still need to look it up each time (I still don’t know Latin CW 100% and have to check with a list most of the time) there’s a Wikipedia page with it on that I use. But effectively to make the callsigns “proper” they should be given their Russian ones – RIW is actually РИВ, RAA is РАА and RCV is РЦЖ as examples.

But, and here’s the interesting thing, the Russians use CW Q and Z codes! And to be honest I’m not sure whether they translate the Q code into Cyrillic or if they use the codes as normal – QSL for instance. Either way, they use these codes and they have also created some of their own.

For now though we’ll use Latin CW for all the associated callsigns and messages

Ropucha Class Amphibious Landing Ship “Yamal” (Ямал), callsign RHV42 (РХЖ42), highlights the problems with using Latin Russian versus Cyrillic Russian. A direct translation of the ships name would be Ämal if it was used as the CW callsign. Knowledge of Russian alphabets certainly helps with monitoring the Russians – photo by Photo by Yörük Işık

How to track the ships

I’ll list some of the frequencies required later on, but the best place to start is to monitor 12464 kHz during the day from 0600z to 1800z; and 8345 kHz overnight from 1800z to 0600z. This isn’t always the case as propagation has its way sometimes and the ships will try the other frequency, but these are the primary ship frequencies to start with and their associated times of use. The Russians work in the majority using a duplex system with the HQ’s using their own frequencies to transmit on. Whilst all of the HQ’s will have an operator listening out on the primary ship frequencies, the ships will be listening to their HQ frequency (frequencies) only. The only other frequency the ships will be listening to is that that has been allocated to RIW for that day in case Moscow wants to get in contact with them, or for flash messages. Some of the ships ignore their home base and send direct to Moscow, and then sometimes if a ships HQ doesn’t answer them they’ll try another to relay on the message for them. I want to cover message types and methods in greater detail in another article so for this one I’m going to concentrate on the message type that allows us to pinpoint the location of the ships.

So how do we do it? It’s actually quite easy, and the Russians use another western method to give us this information. For some reason they use the same code used by NOAA for Marine Surface Weather Observations, the FM-13-X-SHIP. Whether these reports are sent on to NOAA or not, we don’t know, but I doubt it. The Russians have their own Hydrographic units as you’ll see in a moment or by looking at my callsign list and we can only presume that they use this code as it’s already there and they don’t have to think up their own method.

If you’re not familiar with the FM-13 code then here’s a link that will take you to the 150 page PDF file on their website. Below though is an example message sent by RKB91 (РКБ91) – Altay Class Tanker “Kola”:

RKB91 605 16 22 1000 605 = SML FOR RJH45 RJD38 =
22061 99572 10081 41598 43408 10004 40110 51024 70202 8////
22252 00140 22012 = + RKB91

What we have here is a combination of both the Russian navy signal method (line 1) followed by the FM-13 code, ending with the Russian message system again. To decode the first line:
RKB91 = callsign
605 = message number
16 = number of groups in message
22 = date
1000 = Moscow time (this was sent at 0600z, but there’s now a three hour time difference between Moscow and UTC)
605 = repeat of message number
SML = Message priority, in this case SML stands for Samolet (fighter jet) – normal priority
FOR = for
RJH45 RJD38 = Hydrographic station callsigns

The next two lines are the FM-13 message giving the weather at the site of the observation. The link to the codebook will give you further information, but the parts we are most interested in are the first three groups:
22061 = 22 (date), 06 (0600z) 1 (1st FM-13 message of the hour)
99572 = 99 (latitude), 572 (57.2N)
10081 = 10 (Longitude – East), 081 (08.1)
The final group we’re interested in is:
22252 = 222 (heading speed), 5 (heading SW), 2 (6 to10kts)

The last number group and the callsign repeat is part of the Russian message system again – 22012 confirming that there’s 12 groups of numbers in the message and the date, in this case the 22nd.

From this then the message translates to an observation position of – 57.2N 08.1E heading SW @ 6-10kts, just off the North Western coast of Denmark. The position can be viewed here on Bing maps

The Bosporus is a busy channel. Here USN Arleigh Burke Class Destroyer USS Ross heads west, whilst Novocherkassk heads east towards the Black Sea - Photo by Yörük Işık

The Bosporus is a busy channel. Here USN Arleigh Burke Class Destroyer USS Ross heads west, whilst Novocherkassk heads east towards the Black Sea – Photo by Yörük Işık

Most of the messages we receive are of course from the Eastern Longitude and Northern Hemisphere, but we do get the odd one from the Western Longitude, in which case in the example above it would have read 70081. I am yet to receive anything from the Southern Hemisphere but if I were to then the first number would be either a 5 (for Western Latitude, Southern Hemisphere) or a 3 (for Eastern Latitude in the south).

Prior to the FM-13 message RKB91 would have called Kaliningrad to establish the connection, and these go like this:
VVV RMP RMP RMP DE RKB91 RKB91 QSA? QTC

So as you can see, they do use Q codes.

With regards to the Hydrographic stations, we don’t know exactly where they are, but we have rough idea. We’re pretty certain that RJH45 is the main one in Moscow. The second callsign in the example above is probably a regional Hydrographic station for the Baltic region, or a collective for all ships of the Baltic Fleet.

Finally, the messages are normally sent every six hours – 0600z, 1200z, 1800z and 0000z. There are certain times where ships send every three hours. As you can imagine, when it’s busy the frequencies can get a bit chaotic as the calls tend to step all over one another.

I said I didn’t know CW that well, and I don’t really. But you do get use to the patterns of the callsigns, in particular the HQ’s. And you also get used to the radio operators and their speed/way of sending the messages. On one occasion we were able to work out the shift pattern of one ship by the changes in the operator methods.

One other quirk to the Russian CW is the short zero. To save time, instead of five dah’s, they will only send one (T), though this is normally in context and is noticeable whether it should be a zero or a T. Not every operator will do this and they’ll send the zero correctly.

Callsign Tie-Ups

So, we have the callsigns for the bases tied up (well some of them) but how do we get the ships? This is down to a couple of methods, the first being the Russian navy themselves. The Russian navy has a very active website and they regularly post movements of their ships and where they’ve docked. You only need to keep an eye on these reports and tie-up arrival/departure dates with any unidentified callsigns to get a pretty good match up.

The second method is down to online photos, blogs and media such as twitter. There’s numerous different websites that promote photos of ships, sites like Marinetraffic.com, shipspotting.com and shipais.com. These all have dates when the photos were taken. A great blog for getting the Black Sea fleet has to be Bosporus Naval News which not only shows photos taken by locals (including some of those in this article by Yörük Işık) but also lists dates when Naval vessels, not just Russian, pass through the Bosporus.

With all these different methods you can find out what callsign belongs to which ship. It’s not easy, and it can take some time, especially if the ships don’t send many FM-13 reports. Of course, we’re not always right at first. In some cases the ships are in a flotilla, and only one ship out of the group will send a report. In this case you haven’t a clue which one you’re listening to, unless you’ve already tied one from the flotilla up previously. Recently we caught a new callsign, RJC20, going through the Bosporus so we waited for some pictures to emerge only to discover that two ships had gone through together, with only one sending reports. For a short while we thought it had to be Sorum Class Sea-going Tug “MB-31” as this was seemingly the escort ship to Dergach Class Missile Patrol Boat “Samum”; it’s normally the case that in a group the tug or tanker escort would do the FM-13 reports. Further into the reports, going on for a month or so, it still looked like the RJC20 belonged to MB-31 until new information came to light that Samum was taking part in the anniversary of the Battle of Navarino memorial flotilla off Pilos in Greece, the exact location of RJC20. It only took another week or so for RJC20 to return to the Black Sea and Samum was captured on “film” again whilst reports were given that MB-31 was escorting another ship off Malta. So this confirmed that RJC20 was Samum – or did it? On the 28th of March RJC20 plotted through the Bosporus again, and this time only MB-31 went westbound. Eventually then, this tied up RJC20. So you see it’s all about patience and almost a bit of Intelligence investigative skills that make this hobby work – its good fun.

2013 was the 70th Anniversary of the Battle of the Atlantic and an event was held at Liverpool docks. One of the ships that participated was Udaloy Class Destroyer, Vitse Admiral Kulakov. I was unable to attend but one of the Russian CW monitors, Roger Hutchinson, did manage it and was able to take the tour around the ship. I’m not jealous at all. Here’s one of the many photos he took showing the huge amount of antennas on board this destroyer, which uses the callsign RGR35 (PГР35). As well as all the antennas you can see the 30mm AK-630 6 barrelled gun used for air-defence (of which there are four on board) and its associated “Bass Tilt” Fire Control radar on the structure to its right. There’s seven other radars shown here with another 8 or 9 out of shot – photo Roger Hutchinson

2013 was the 70th Anniversary of the Battle of the Atlantic and an event was held at Liverpool docks. One of the ships that participated was Udaloy Class Destroyer, Vitse Admiral Kulakov. I was unable to attend but one of the Russian CW monitors, Roger Hutchinson, did manage it and was able to take the tour around the ship. I’m not jealous at all. Here’s one of the many photos he took showing the huge amount of antennas on board this destroyer, which uses the callsign RGR35 (PГР35). As well as all the antennas you can see the 30mm AK-630 6 barrelled gun used for air-defence (of which there are four on board) and its associated “Bass Tilt” Fire Control radar on the structure to its right. There’s seven other radars shown here with another 8 or 9 out of shot – photo Roger Hutchinson

Earlier I mentioned the AGI ships. These don’t send FM-13 reports at all, and generally only contact Moscow (RIW) with other message types. This then makes it practically impossible to tie up the callsigns – unless the Russian navy happen to help you out. Callsign RMMA has foxed us for well over two years at least, appearing every now and again, and in fact being one of the very first callsigns that I logged. It always has very strong signals to the UK initially which meant it was in the vicinity of the Northern or Baltic fleet home bases, the North Sea or Eastern Atlantic. It would fade eventually as the distance from here increased, but with the usual propagation affects that sometimes brought it booming in.

In September 2012, a Russian navy ship had been spotted off Cape Canaveral where there were two scheduled launches for the beginning of October. There was also a planned launch of a Trident II D5 from a Royal Navy submarine later on in October. At that time there was an unidentified callsign, RJQ84, operating in that area so at first we thought this would be an AGI of some sort, though sending FM-13 messages was unusual. Then RMMA and RJQ84 sent messages to each other, saying to use VHF radios to communicate. This meant they were close to one another and so we thought maybe RJQ84 was an escort ship to the AGI, RMMA. At the end of September RJQ84 headed for Jacksonville, I seem to remember because of a hurricane hitting the area, and reports followed that a Rescue tug had arrived in port, this turning out to be Sliva Class “Vikr”. A few days later other reports announced that Vishnya Class AGI “Viktor Leonov” had suddenly arrived in Havana. And RMMA had disappeared from sending messages. Was RMMA Viktor Leonov? We never got any solid proof and so I left it pencilled in on my list.

RMMA has cropped up since then but with no news of Viktor Leonov there was nothing to go on. So why is this relevant now you say? Well, RMMA turned up about a month ago (December 2014 at time of writing the article), very strong then fading, again no FM-13 reports. On the 22nd of January Tom spotted a news report that Viktor Leonov had again docked at Havana on the 20th, the day that RMMA went off station. This coincidence was too much and RMMA is now logged as Viktor Leonov.

Frequencies

This is a hard one really. Those of us that monitor the Russian navy have discovered hundreds of frequencies that they use; a file on UDXF lists 578 currently in use. To get you started though here’s a few of the more active frequencies:
8345 Ship night primary (duplex)
12464 Ship day primary (duplex)
11000 Moscow (duplex) c/s RIW
14556 Moscow (duplex) c/s RIW
11155 Severomorsk (duplex) c/s RIT
8120 Navy HQ St. Petersburg (simplex) c/s RAA
4079 Kaliningrad (duplex) c/s RMP
8348 Pacific Fleet ship primary (duplex)
5411 Vladivostok (duplex) c/s RJS
3395.5 Sevastopol (simplex) c/s RCV
19201 Sevastopol (weather/nav warnings) c/s RCV
4635 White Sea area ships calling Severodvinsk (duplex)
4376.5 White Sea area ships calling Severodvinsk (duplex)

WinRadio Excalibur memory list for the Russian Navy CW network, whilst monitoring one of the Severodvinsk frequencies, RJD99 (РЙД99). Note also the repeated transmission on 4625, the famous Russian enigma net “The Buzzer”

WinRadio Excalibur memory list for the Russian Navy CW network, whilst monitoring one of the Severodvinsk frequencies, RJD99 (РЙД99). Note also the repeated transmission on 4625, the famous Russian enigma net “The Buzzer”

The White Sea frequencies are always interesting ones to monitor. On quite a few occasions we’ve caught a build of ships before an exercise or launches of nuclear/cruise missile tests from submarines. Most here remain unidentified as they haven’t left the White Sea, or certainly haven’t gone far from it.

I would say, for the West coast of America the best bet is to listen in on the Pacific/Vladivostok frequencies, but this doesn’t mean the others are out of range. We have recently followed Akademik Krylov Class Survey/Research Ship “Admiral Vladimirskiy” (RHO62) on a round the world tour where here in the UK we were able to pick it up on the Pacific primary of 8348 kHz, as well as getting it on 8345 kHz. In fact it used 8345 more than anything in the later stages of being in the Pacific where we able to catch it on the west coast of Costa Rica and going through the Panama Canal. RHO62 is due to go out on another voyage at the end of this year, this time to the Antarctic.

One last tip – always record the frequency, unless you’re super good at CW; and even then, always record the frequency. Sometimes I wonder whether the radio operators are trying to beat the world record for the fastest message sent by Morse code.

Well, I hope you may have found this interesting. Monitoring the Russian navy can be challenging and it has the added element of lots of investigation and research to make it work fully, but that is the fun part. Through this new “hobby” I renewed my interest in Russian military hardware, deciding to buy a Jane’s Fighting Ships a few years ago so that I knew exactly what the ships looked like that I was listening to. Because of this I got to know the editor of the yearbook and I now provide photos as well as carrying out research on the Russian navy for inclusion within the book.

There is still a huge amount to cover and my next article on the Russian navy will be on other message types you may hear when listening in. So until then, do svidaniya i spasibo (до свидания и спасибо)